Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404170, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781086

RESUMO

The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficient among crystal facets facilitates Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.

2.
Angew Chem Int Ed Engl ; : e202406677, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825572

RESUMO

The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30 nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.

3.
Rev Sci Instrum ; 92(12): 121301, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972456

RESUMO

Nanopore measurement has advanced in single-molecule analysis by providing a transient time and confined space window that only allows one interested molecule to exist. By optimization and integration of the electrical and optical analysis strategies in this transient window, the acquisition of comprehensive information could be achieved to resolve the intrinsic properties and heterogeneity of a single molecule. In this work, we present a roadmap to build a unified optical and electrochemical synchronous measurement platform for the research of a single molecule. We design a low-cost ultralow-current amplifier with low noise and high-bandwidth to measure the ionic current events as a single molecule translocates through a nanopore and combine a multi-functional optical system to implement the acquisition of the fluorescence, scattering spectrum, and photocurrent intensity of single molecule events in a nanopore confined space. Our system is a unified and unique platform for the protein nanopore, the solid-state nanopore, and the glass capillary nanopore, which has advantages in the comprehensive research of nanopore single-molecule techniques.


Assuntos
Nanoporos , Dispositivos Ópticos , Eletricidade , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA