Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36361300

RESUMO

Uncontrolled, large-scale human mobility can amplify a localized disease into a pandemic. Tracking changes in human travel behavior, exploring the relationship between epidemic events and intercity travel generation and attraction under policies will contribute to epidemic prevention efforts, as well as deepen understanding of the essential changes of intercity interactions in the post-epidemic era. To explore the dynamic impact of small-scale localized epidemic events and related policies on intercity travel, a spatial lag model and improved gravity models are developed by using intercity travel data. Taking the localized COVID-19 epidemic in Xi'an, China as an example, the study constructs the travel interaction characterization before or after the pandemic as well as under constraints of regular epidemic prevention policies, whereby significant impacts of epidemic events are explored. Moreover, indexes of the quantified policies are refined to the city level in China to analyze their effects on travel volumes. We highlight the non-negligible impacts of city events and related policies on intercity interaction, which can serve as a reference for travel management in case of such severe events.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , Viagem , Cidades/epidemiologia , China/epidemiologia
2.
Sci Total Environ ; 831: 154870, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35353983

RESUMO

Understanding the nitrogen oxide (NOx) formation chemical kinetic mechanism and analyzing the effect of relevant influence parameters are the effective strategy for NOx emission control. Based on the essential role of ethanol-gasoline blends among oxygenate alternative fuel, the experiments in a GDI (gasoline direct injection) SI (spark ignition) engine and the chemical kinetic simulation were carried out. According to the validated model, seven NO contributing reactions and three reaction pathways were observed. Besides the thermal NO formation pathway, two other pathways with N2O and NNH through NH-HNO-NO have nonnegligible places in the high engine speed condition. As for the parameters, initial temperature aggravates NO emission, initial pressure and ethanol fraction inhibit NO, which influence it through thermal NO pathway and have slight impact on the other two pathways. While with the increase of equivalence ratio (ER) from 0.5 to 1.0, ER promotes first and then resists NO formation, getting highest emission when ER equals to 0.85. In a lean burn condition, the thermal pathway is highly inhibited and the N2O pathway is sharply accelerated. Through current work, NOx producing mechanism under high-speed condition is investigated comprehensively, which not only completes the total NO formation pathways from atmospheric N2 but also provides reference for the designing and modification of low harmful NOx emitting gasoline-ethanol engines.


Assuntos
Gasolina , Emissões de Veículos , Monóxido de Carbono/análise , Etanol , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA