Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(33): e202408569, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38837843

RESUMO

The integration of hostless battery-like metal anodes for hybrid supercapacitors is a realistic design method for energy storage devices with promising future applications. With significant Cr element deposits on Earth, exceptionally high theoretical capacity (1546 mAh g-1), and accessible redox potential (-0.74 V vs. reversible hydrogen electrode) of Cr metals, the design of Cr anodes has rightly come into our focus. This work presents a breakthrough design of a flexible Cr-ion hybrid supercapacitor (CHSC) based on a porous graphitized carbon fabric (PGCF) substrate prepared by K2FeO4 activation. In the CHSC device, PGCF acts as both a current collector and cathode material due to its high specific surface area and superior conductivity. The use of a highly concentrated LiCl-CrCl3 electrolyte with high Cr plating/stripping efficiency and excellent antifreeze properties enables the entire PGCF-based CHSC to achieve well-balanced performance in terms of energy density (up to 1.47 mWh cm-2), power characteristics (reaching 9.95 mW cm-2) and durability (95.4 % capacity retention after 30,000 cycles), while realizing it to work well under harsh conditions of -40 °C. This work introduces a new concept for low-temperature energy storage technology and confirms the potential application of Cr anodes in hybrid supercapacitors.

2.
J Colloid Interface Sci ; 667: 157-165, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636217

RESUMO

The practical application of zinc ion batteries (ZIBs) can be facilitated by designing cathode materials with unique structures that can overcome the critical problems of slow reaction kinetics and large volume expansion associated with the intercalation reaction of divalent zinc ions. In this study, a novel urchin-like (NH4)2V10O25·8H2O assembled from nanorods was synthesized by a simple hydrothermal method, noted as U-NVO. The interlayer organic pillar of cetyltrimethylammonium cation (CTAB) has been intercalated between layers to regulate the interlayer microstructure and expand the interlayer spacing to 1.32 nm, which effectively increased the contact between the electrode and electrolyte interface and shortened the diffusion path of electrolyte ions. The interlayer pillars of structural H2O and NH4+ provide a flexible framework structure and enhance the cohesion of the layered structure, which helps to maintain structural stability during the charging and discharging process, resulting in long-term durability. These unique properties result in the U-NVO cathodes demonstrating high specific capacity (401.7 mA h g-1 at 0.1 A g-1), excellent rate capability (99.6 % retention from 0.1 to 5 A g-1 and back to 0.1 A g-1), and long-term cycling performance (∼87.5 % capacity retention after 2600 cycles). These results offer valuable insights into the design of high-performance vanadium oxide cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA