Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioact Mater ; 39: 147-162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38808158

RESUMO

Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.

2.
Comput Methods Biomech Biomed Engin ; 27(11): 1552-1562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899984

RESUMO

The meniscus plays a crucial role in the proper functioning of the knee joint, and when it becomes damaged, partial removal or replacement is necessary to restore proper function. Understanding the stress and deformation of the meniscus during various movements is essential for developing effective materials for meniscus repair. However, accurately estimating the contact mechanics of the knee joint can be challenging due to its complex shape and the dynamic changes it undergoes during movement. To address this issue, the open-source software SCONE can be used to establish a kinematics model that monitors the different states of the knee joint during human motion and obtains relevant gait kinematics data. To evaluate the stress and deformation of the meniscus during normal human movement, values of different states in the movement gait can be selected for finite element analysis (FEA) of the knee joint. This analysis enables researchers to assess changes in the meniscus. To evaluate meniscus damage, it is necessary to obtain changes in its mechanical behavior during abnormal movements. This information can serve as a reference for designing and optimizing the mechanical performance of materials used in meniscus repair and replacement.


Assuntos
Análise de Elementos Finitos , Marcha , Humanos , Marcha/fisiologia , Fenômenos Biomecânicos , Menisco/fisiologia , Menisco/fisiopatologia , Articulação do Joelho/fisiologia , Simulação por Computador , Meniscos Tibiais/fisiologia , Meniscos Tibiais/fisiopatologia , Modelos Biológicos
3.
Mater Today Bio ; 26: 101042, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660473

RESUMO

High oxidative stress and inflammatory cell infiltration are major causes of the persistent bone erosion and difficult tissue regeneration in rheumatoid arthritis (RA). Triptolide (TPL) has become a highly anticipated anti-rheumatic drug due to its excellent immunomodulatory and anti-inflammatory effects. However, the sudden drug accumulation caused by the binding of "stimulus-response" and "drug release" in a general smart delivery system is difficult to meet the shortcoming of extreme toxicity and the demand for long-term administration of TPL. Herein, we developed a dual dynamically cross-linked hydrogel (SPT@TPL), which demonstrated sensitive RA microenvironment regulation and microenvironment modulation-independent TPL release for 30 days. The abundant borate ester/tea polyphenol units in SPT@TPL possessed the capability to respond and regulate high reactive oxygen species (ROS) levels on-demand. Meanwhile, based on its dense dual crosslinked structure as well as the spontaneous healing behavior of numerous intermolecular hydrogen bonds formed after the breakage of borate ester, TPL could remain stable and slowly release under high ROS environments of RA, which dramatically reduced the risk of TPL exerting toxicity while maximized its long-term efficacy. Through the dual effects of ROS regulation and TPL sustained-release, SPT@TPL alleviated oxidative stress and reprogrammed macrophages into M2 phenotype, showing marked inhibition of inflammation and optimal regeneration of articular cartilage in RA rat model. In conclusion, this hydrogel platform with both microenvironment initiative regulation and TPL long-term sustained release provides a potential scheme for rheumatoid arthritis.

4.
Bioact Mater ; 39: 1-13, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38783924

RESUMO

Irregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared. After injection into cartilage defects, PUBGF forms in situ at the site of the defect and exhibits a dynamic microstructure during the initial two weeks. This dynamic microstructure endows the scaffold with the ability to retain substances within its interior, thereby enhancing its capacity to promote chondrogenesis. Furthermore, the chondral repair efficacy of PUBGF was validated by directly injecting it into rat articular cartilage injury sites. The injectable PUBGF scaffold demonstrates a superior potential for promoting the repair of cartilage defects when compared to traditional porous polyurethane scaffolds. The substance retention ability of this injectable porous scaffold makes it a promising option for clinical applications.

5.
ACS Appl Mater Interfaces ; 16(30): 38852-38879, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39041365

RESUMO

Biophysical and clinical medical studies have confirmed that biological tissue lesions and trauma are related to the damage of an intrinsic electret (i.e., endogenous electric field), such as wound healing, embryonic development, the occurrence of various diseases, immune regulation, tissue regeneration, and cancer metastasis. As exogenous electrical signals, such as conductivity, piezoelectricity, ferroelectricity, and pyroelectricity, bioelectroactives can regulate the endogenous electric field, thus controlling the function of cells and promoting the repair and regeneration of tissues. Materials, once polarized, can harness their inherent polarized static electric fields to generate an electric field through direct stimulation or indirect interactions facilitated by physical signals, such as friction, ultrasound, or mechanical stimulation. The interaction with the biological microenvironment allows for the regulation and compensation of polarized electric signals in damaged tissue microenvironments, leading to tissue regeneration and repair. The technique shows great promise for applications in the field of tissue regeneration. In this paper, the generation and change of the endogenous electric field and the regulation of exogenous electroactive substances are expounded, and the latest research progress of the electret and its biological effects in the field of tissue repair include bone repair, nerve repair, drug penetration promotion, wound healing, etc. Finally, the opportunities and challenges of electret materials in tissue repair were summarized. Exploring the research and development of new polarized materials and the mechanism of regulating endogenous electric field changes may provide new insights and innovative methods for tissue repair and disease treatment in biological applications.


Assuntos
Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Eletricidade , Engenharia Tecidual
6.
Int J Biol Macromol ; 273(Pt 2): 133191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880455

RESUMO

Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.


Assuntos
Celulose , Animais , Celulose/química , Celulose/farmacologia , Ratos , Aderências Teciduais/prevenção & controle , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Parede Abdominal/cirurgia , Parede Abdominal/patologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Propriedades de Superfície , Hérnia Abdominal/prevenção & controle , Telas Cirúrgicas , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA