Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(3): 1284-1292, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194438

RESUMO

In this work, a novel nanozyme (Cu@Zr) with all-in-one dual enzyme and fluorescence properties is designed by simple self-assembly. A nanozyme cascade sensor with disodium phenyl phosphate (PPDS) as substrate was first established by exploiting the dual enzymatic activities of phosphatase and laccase. Specifically, phosphatase cleaves the P-O bond of PPDS to produce colorless phenol, which is then oxidized by laccase and complexed with the chromogenic agent 4-aminoantipyrine (4-AP) to produce red quinoneimine (QI). Strikingly, the NH3 produced by the urease hydrolysis of urea can interact with Cu@Zr, accelerating the electron transfer rate and ultimately leading to a significantly improved performance of the cascade reaction. Moreover, the fluorescence at 440 nm of Cu@Zr is further quenched by the inner filter effect (IFE) of QI. Thus, the colorimetric and fluorescence dual-mode strategy for sensitive urease analysis with LODs of 3.56 and 1.83 U/L was established by the proposed cascade sensor. Notably, a portable swab loaded with Cu@Zr was also prepared for in situ urease detection with the aid of a smartphone RGB readout. It also provides a potentially viable analytical avenue for environmental and biological analysis.


Assuntos
Técnicas Biossensoriais , Urease , Urease/química , Lacase , Hidrólise , Monoéster Fosfórico Hidrolases , Colorimetria
2.
Anal Chem ; 96(25): 10365-10372, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869249

RESUMO

Biomimetic cytochrome P450 for chemical activation of environmental carcinogens is an efficient in vitro model for evaluating their mutagenicity and ultimately acquiring the metabolites that cannot be easily accessed by conventional routes of organic synthesis. Different kinds of mutagen derived from polyaromatic hydrocarbons (PAHs) by metalloporphyrin/oxidant model systems have been reported, but the underlying molecular mechanisms are poorly understood. Herein, we have for the first time demonstrated an effective surface-enhanced Raman scattering (SERS) protocol to study the dynamics and biomimetic metabolic behaviors of pyrene (Pyr) in the presence of various oxygen donors. Quantitative information on the relative concentration of Pyr and its metabolites in the biomimetic system can be extracted from the SERS spectra. On the basis of our results, we conclude that the oxidative metabolism of Pyr is highly influenced by the types and concentrations of oxygen donors, leading to the formation of 1-hydroxypyrene and dioxygenated products. Besides, the addition of an appropriate amount of an organic solvent can promote the formation of secondary oxidation products. These results offer valuable insights into the dynamics of PAHs metabolism and the regulation of their metabolic pathways in biomimetic activation. In comparison to traditional liquid chromatography-mass spectrometry, the present SERS approach is more suitable for high-throughput evaluation of the metabolic process and kinetics of PAHs. We anticipate that this approach will enable a more general and comprehensive tracking of metabolic dynamics and molecular mechanisms involved in the biomimetic activation of other xenobiotics, such as procarcinogens, promutagens, and drugs.


Assuntos
Pirenos , Análise Espectral Raman , Análise Espectral Raman/métodos , Cinética , Pirenos/química , Pirenos/metabolismo , Biomimética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Propriedades de Superfície , Ativação Metabólica , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
3.
Environ Res ; 259: 119498, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942254

RESUMO

Microplastics (MPs) can enter the reproductive system and can be potentially harmful to human reproductive health. In this study, 13 types of microplastics (MPs) were identified in patient blood, cancer samples, and paracarcinoma samples using Raman spectroscopy, with polyethylene, polypropylene and polyethylene-co-polypropylene being the most abundant polymer types. Futher, cotton was also found in our study. The diversity and abundance of MPs were higher in blood samples than in cancerous tissues, and there was a significant positive correlation between diversity (p < 0.05). Furthermore, the diversity and abundance of MPs in cancerous tissues were higher than in paracancerous tissues. The dimensional sizes of MPs in these samples were also very similar, with the majority of detected MPs being smaller in size. Correlation analysis showed that patient's age correlated with the abundance of MPs in blood samples, body mass index (BMI) correlated with the abundance of MPs in cancerous tissues. Notably, the frequency with which patients consume bottled water and beverages may also increase the abundance of MPs. This study identifies for the first time the presence of MPs and cotton in cancerous and paracancerous tissues of human cervical cancer patients. This provides new ideas and basic data to study the risk relationship between MP exposure and human health.

4.
Food Microbiol ; 117: 104387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37919011

RESUMO

Ultrasonic treatment is widely used for surface cleaning of vegetables in the processing of agricultural products. In the present study, the molecular and proteomic response of Pseudomonas fluorescens biofilm cultured on lettuce was investigated after ultrasound treatment at different intensity levels. The results show that the biofilm was efficiently removed after ultrasound treatment with intensity higher than 21.06 W/cm2. However, at an intensity of less than 18.42 W/cm2, P. fluorescens was stimulated by ultrasound leading to promoted bacterial growth, extracellular protease activity, extracellular polysaccharide secretion (EPS), and synthesis of acyl-homoserine lactones (AHLs) as quorum-sensing signaling molecules. The expression of biofilm-related genes, stress response, and dual quorum sensing system was upregulated during post-treatment ultrasound. Proteomic analysis showed that ultrasound activated proteins in the flagellar system, which led to changes in bacterial tendency; meanwhile, a large number of proteins in the dual-component system began to be regulated. ABC transporters accelerated the membrane transport of substances inside and outside the cell membrane and equalized the permeability conditions of the cell membrane. In addition, the expression of proteins related to DNA repair was upregulated, suggesting that bacteria repair damaged DNA after ultrasound exposure.


Assuntos
Lactuca , Pseudomonas fluorescens , Pseudomonas fluorescens/fisiologia , Proteômica , Biofilmes , Percepção de Quorum
5.
J Sci Food Agric ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967243

RESUMO

BACKGROUND: Mycotoxin contamination of food has been gaining increasing attention. Hidden mycotoxins that interact with biological macromolecules in food could make the detection of mycotoxins less accurate, potentially leading to the underestimation of the total exposure risk. Interactions of the mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) with high-molecular glutenin were explored in this study. RESULTS: The recovery rates of AOH and AME (1, 2, and 10 µg kg-1) in three types of grains (rice, corn, and wheat) were relatively low. Molecular dynamics (MD) simulations indicated that AOH and AME bound to glutenin spontaneously. Hydrogen bonds and π-π stacking were the primary interaction forces at the binding sites. Alternariol with one additional hydroxyl group exhibited stronger binding affinity to glutenin than AME when analyzing average local ionization energy. The average interaction energy between AOH and glutenin was -80.68 KJ mol-1, whereas that of AME was -67.11 KJ mol-1. CONCLUSION: This study revealed the mechanisms of the interactions between AOH (or AME) and high-molecular glutenin using MD and molecular docking. This could be useful in the development of effective methods to detect pollution levels. These results could also play an important role in the evaluation of the toxicological properties of bound altertoxins. © 2024 Society of Chemical Industry.

6.
Environ Geochem Health ; 46(8): 276, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958774

RESUMO

The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.


Assuntos
Cadeia Alimentar , Contaminação de Alimentos , Microplásticos , Humanos , Contaminação de Alimentos/análise , Bioacumulação , Monitoramento Ambiental
7.
Cytokine ; 161: 156058, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209650

RESUMO

Understanding the crosstalk between endothelial cells (ECs) and bone-marrow mesenchymal stem cells (BMSCs) in response to hypoxic environments and deciphering of the underlying mechanisms are of great relevance for better application of BMSCs in tissue engineering. Here, we demonstrated that hypoxia promoted BMSCs proliferation, colony formation, osteogenic markers expression, mineralization, and extracellular signal-regulated protein kinase (ERK) phosphorylation, and that PD98059 (ERK inhibitor) blocked hypoxia-induced osteogenic differentiation. Hypoxia enhanced ECs migration, cyclooxygenase 2 (COX-2) and integrin αvß3 expression, and prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) secretion. NS398 (selective COX-2 inhibitor) and LM609 (integrin αvß3 specific inhibitor) impaired the ECs response to hypoxia, and exogenous PGE2 partially reversed the effects of NS398. BMSCs: ECs co-culture under hypoxia upregulated BMSCs osteogenesis and ERK phosphorylation, as well as ECs migration, integrin αvß3 expression, and PGE2 and VEGF secretion. NS398 (pretreated ECs) lessened PGE2, VEGF concentrations of the co-culture system. NS398-treated ECs and AH6809 (combined EP1/2 antagonist)/L-798106 (selective EP3 antagonist)/L-161982 (selective EP4 antagonist)/SU5416 [VEGF receptor (VEGFR) inhibitor]-treated BMSCs impaired the co-cultured ECs-induced enhancement of BMSCs osteogenic differentiation. In conclusion, hypoxia enhances BMSCs proliferation and ERK-mediated osteogenic differentiation, and augments the COX-2-dependent PGE2 and VEGF release, integrin αvß3 expression, and migration of ECs. COX-2/PGE2/VEGF signaling is involved in intercellular BMSCs: ECs communication under hypoxia.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipóxia/metabolismo , Integrinas , Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Mol Cell Biochem ; 478(10): 2191-2206, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36640256

RESUMO

The study aims to explore the role of the ERK signaling pathway in the crosstalk between Dkk-1 and TNF-α in MC3T3E1 pre-osteoblasts under cyclic tensile/compressive stress. A forced four-point bending system was used to apply cyclic uniaxial tensile/compressive strain (2000 µ, 0.5 Hz) to MC3T3E1 cells. Dkk-1 and TNF-α expression were upregulated in MC3T3E1 cells under compressive strain. Cell proliferation, the cell cycle, osteogenesis-related gene (Wnt5a, Runx2, Osterix) expression, ß-catenin expression, and the p-ERK/ERK ratio were significantly enhanced, whereas apoptosis, the RANKL/OPG ratio, and TNF-α expression were significantly attenuated, by Dkk-1 silencing. Dkk-1 expression increased and the effects of Dkk-1 silencing were reversed when exogenous TNF-α was added. Mechanically, TNF-α crosstalked with Dkk-1 through ERK signaling in MC3T3E1 cells. ERK signaling blockade impaired Dkk-1-induced TNF-α expression and TNF-α-mediated Dkk-1 expression. Dkk-1 and TNF-α crosstalked, partially through ERK signaling, in MC3T3E1 cells under compressive/tensile strain, synergistically modulating various biological behaviors of the cells. These findings not only provide mechanical insight into the cellular events and molecular regulation of orthodontic tooth movement (OTM), but also aid the development of novel strategies to accelerate OTM.


Assuntos
Transdução de Sinais , Fator de Necrose Tumoral alfa , Diferenciação Celular , Proliferação de Células , Osteoblastos/metabolismo , Osteogênese , Estresse Mecânico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Camundongos
9.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584269

RESUMO

The extensive utilization of pesticides in agriculture has resulted in the presence of pesticide residues in food and feed, which poses a significant threat to human health. Various physical and chemical methods have been proposed to remove pesticides, but most of these methods are either costly or susceptible to secondary contamination. Consequently, the utilization of microorganisms, such as probiotics, for eliminating pesticides, has emerged as a promising alternative. Probiotics, including lactic acid bacteria, yeasts, and fungi, have demonstrated remarkable efficiency and convenience in eliminating pesticide residues from food or feed. To promote the application of probiotic decontamination, this review examines the current research status on the utilization of probiotics for pesticide reduction. The mechanisms involved in microbial decontamination are discussed, along with the toxicity and potential health risks of degradation products. Furthermore, the review explores strategies to enhance probiotic detoxification and outlines prospects for future development.

10.
Crit Rev Food Sci Nutr ; 63(27): 8808-8822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35389275

RESUMO

G-quadruplex (G4) is a very interesting DNA structure, commonly associated with cancer and its treatment. With flexible binding ability, G4 has been extended as a significant component in biosensors. On account of its simple operation, high sensitivity and low cost, G4-based biosensors have attracted considerable interest for the detection of food contaminants. In this review, research published in recent 5 years is collated from a principle perspective, that is target recognition and signal transduction. Contaminants with G4 binding capacity are illustrated, emerging G4-based biosensors including colorimetric, electrochemical and fluorescent sensors are also elaborated. The current review indicates that G4 has provided an efficient and effective solution for the rapid detection of food contaminants. A distinctive feature of G4 as recognition unit is the simple composition, but the selectivity is still unsatisfactory. As signal reporter, G4/hemin DNAzyme has not only achieved amplified signals, but also enabled visualized detection, which offers great potential for on-site measurement. With improved selectivity and visualized signal, the combination of aptamer and G4 seems to be an ideal strategy. This promising combination should be developed for the real-time monitor of multiple contaminants in food matrix.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , DNA , DNA Catalítico/química , DNA Catalítico/metabolismo , Aptâmeros de Nucleotídeos/química
11.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175414

RESUMO

Mancozeb, an antifungal typically used for the growth of fruits, has the characteristic of non-internal absorption, and has a risk of binding to the waxy components of fruits. This work investigated the interaction of pesticide molecules with the waxy layer on the grape surface and their effects on pesticide residues in grapes. The study observed significant changes in the compositions of the waxy layer on the grape surface after soaking in a mancozeb standard solution. The six substances-oleanolic acid, ursolic acid, lupeol, octacosanol, hexacosanal, and γ-sitosterol-with discernible content differences were chosen for molecular docking. Docking results were further visualized by an independent gradient model based on Hirshfeld partition (IGMH). Hydrogen bonds and van der Waals forces were found between mancozeb and the six waxy components. Moreover, the negative matrix effects caused by the presence or absence of wax for the determination of mancozeb were different through the QuEChERS-HPLC-MS method. Compared with the residue of mancozeb in grapes (5.97 mg/kg), the deposition of mancozeb in grapes after dewaxing was significantly lower (1.12 mg/kg), which further supports that mancozeb may interact with the wax layer compositions. This work not only provides insights into the study of the interaction between pesticides and small molecules but also provides theoretical guidelines for the investigation of the removal of pesticide residues on the surface of fruits.


Assuntos
Resíduos de Praguicidas , Praguicidas , Vitis , Vitis/química , Resíduos de Praguicidas/análise , Ceras/análise , Simulação de Acoplamento Molecular , Praguicidas/análise , Frutas
12.
J Food Sci Technol ; 60(1): 372-381, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618067

RESUMO

Erwinia carotovora and Pseudomonas fluorescens were two bacteria commonly caused the spoilage of vegetables through biofilm formation and secretion of extracellular enzymes. In this study, N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-Octanoyl-L-homoserine lactone (C8-HSL) were confirmed as acylated homoserine lactones (AHLs) signal molecule produced by E. carotovora and P. fluorescens, respectively. In addition, quorum sensing inhibitory (QSI) effects of hexanal on AHLs production were evaluated. Hexanal at 1/2 minimum inhibitory concentration (MIC) was achieved 76.27% inhibitory rate of 3-oxo-C6-HSL production in E. carotovora and a inhibitory rate of C8-HSL (60.78%) in P. fluorescens. The amount of biofilm formation and activity of extracellular enzymes treated with 1/2 MIC of hexanal were restored with different concentrations (10 ng/mL, 50 ng/mL, 100 ng/mL) of exogenous AHLs (P < 0.05), which verified QSI effect of hexanal on biofilm and extracellular enzymes were due to its inhibition on AHLs production. Molecular docking analysis showed that hexanal could interact with EcbI and PcoI protein to disrupt AHLs production. Furthermore, results showed that sub-MICs of hexanal could suppress expressions of ecbI and pcoI genes in AHL-mediated QS system of E. carotovora and P. fluorescens. This study provides theoretical support for the application of essential oils as QS inhibitors in the preservation of vegetables. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05624-9.

13.
Thorax ; 77(4): 391-397, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34301742

RESUMO

BACKGROUND: Ambient fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has been associated with deteriorated respiratory health, but evidence on particles in smaller sizes and childhood respiratory health has been limited. METHODS: We collected time-series data on daily respiratory emergency room visits (ERVs) among children under 14 years old in Beijing, China, during 2015-2017. Concurrently, size-fractioned number concentrations of particles in size ranges of 5-560 nm (PNC5-560) and mass concentrations of PM2.5, black carbon (BC) and nitrogen dioxide (NO2) were measured from a fixed-location monitoring station in the urban area of Beijing. Confounder-adjusted Poisson regression models were used to estimate excessive risks (ERs) of particle size fractions on childhood respiratory ERVs, and positive matrix factorisation models were applied to apportion the sources of PNC5-560. RESULTS: Among the 136 925 cases of all-respiratory ERVs, increased risks were associated with IQR increases in PNC25-100 (ER=5.4%, 95% CI 2.4% to 8.6%), PNC100-560 (4.9%, 95% CI 2.5% to 7.3%) and PM2.5 (1.3%, 95% CI 0.1% to 2.5%) at current and 1 prior days (lag0-1). Major sources of PNC5-560 were identified, including nucleation (36.5%), gasoline vehicle emissions (27.9%), diesel vehicle emissions (18.9%) and secondary aerosols (10.6%). Emissions from gasoline and diesel vehicles were found of significant associations with all-respiratory ERVs, with increased ERs of 6.0% (95% CI 2.5% to 9.7%) and 4.4% (95% CI 1.7% to 7.1%) at lag0-1 days, respectively. Exposures to other traffic-related pollutants (BC and NO2) were also associated with increased respiratory ERVs. CONCLUSION: Our findings suggest that exposures to higher levels of PNC5-560 from traffic emissions could be attributed to increased childhood respiratory morbidity, which supports traffic emission control priority in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adolescente , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , Serviço Hospitalar de Emergência , Monitoramento Ambiental , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
14.
Small ; 18(18): e2200782, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35373474

RESUMO

Exploring novel electrode composites and their unique interface physics plays a significant role in tuning electrochemical properties for boosting the performance of sodium-ion batteries (SIBs). Herein, mixed-dimensional G/NiS2 -MoS2 heterostructures are synthesized in a low-cost meteorological vulcanization process. The stable graphene supporting layer and nanowire heterostructure guarantee an outstanding structural stability to tolerate certain volume changes during the charge/discharge process. The rational construction of NiS2 -MoS2 heterostructures induces abundant interfaces and unique ion diffusion channels, which render fast electrochemical kinetics and superior reversible capacities for high-performance SIBs. Interestingly, theoretical studies reveal that the anisotropic diffusion barriers create unidirectional "high-speed" channels, which can lead to ordered and fast Na+ insertion/extraction in designed heterostructures. G/NiS2 -MoS2 anode exhibits a high capacity of 509.6 mA h g-1 after 500 cycles and a coulombic efficiency >99% at 0.5 A g-1 , which also displays excellent cycling performance with the capacity of 383.8 mA h g-1 after the 1000 cycles at 5 A g-1 . Furthermore, full cells are constructed exhibiting a high capacity of 70 mA h g-1 at 0.1 A g-1 after 150 cycles and applied to light LEDs. This study provides a feasible strategy of constructing mixed-dimensional heterostructures for SIBs with excellent performance and a long service lifetime.

15.
Crit Rev Food Sci Nutr ; 62(7): 1740-1751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33207954

RESUMO

The problem of drug resistance of food borne pathogens is becoming more and more serious. Although traditional antimicrobial agents have good therapeutic effects on a variety of food borne pathogens, more effective antimicrobial agents are still needed to combat the development of drug-resistant food borne pathogens. Plant-based natural essential oils (EOs) are widely used because of their remarkable antimicrobial activity. A potential strategy to address food borne pathogens drug resistance is to use a combination of EOs and antimicrobial agents. Because EOs have multi-target inhibitory effects on microorganisms, combining them with drugs can enhance the activity of the drugs and avoid the emergence of food borne pathogens drug resistance. This paper introduces the main factors affecting the antibacterial activity of EOs and describes methods for evaluating their synergistic antibacterial effects. The possible mechanisms of action of EOs and the synergistic inhibitory effects on pathogens of EOs in combination with antimicrobial agents is described. In summary, the combined use of EOs and existing antimicrobial agents is a promising potential new antibacterial therapy.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia
16.
Environ Sci Technol ; 56(15): 10868-10878, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35834827

RESUMO

Evidence of the respiratory effects of ambient organic aerosols (e.g., polycyclic aromatic hydrocarbons, PAHs) among patients with chronic diseases is limited. We aimed to assess whether exposure to ambient particle-bound PAHs could worsen small airway functions in patients with chronic obstructive pulmonary disease (COPD) and elucidate the underlying mechanisms involved. Forty-five COPD patients were recruited with four repeated visits in 2014-2015 in Beijing, China. Parameters of pulmonary function and pulmonary/systemic inflammation and oxidative stress were measured at each visit. Linear mixed-effect models were performed to evaluate the associations between PAHs and measurements. In this study, participants experienced an average PAH level of 61.7 ng/m3. Interquartile range increases in exposure to particulate PAHs at prior up to 7 days were associated with reduced small airway functions, namely, decreases of 17.7-35.5% in forced maximal mid-expiratory flow. Higher levels of particulate PAHs were also associated with heightened lung injury and inflammation and oxidative stress. Stronger overall effects were found for PAHs from traffic emissions and coal burning. Exposure to ambient particulate PAHs was capable of impairing small airway functions in elderly patients with COPD, potentially via inflammation and oxidative stress. These findings highlight the importance of control efforts on organic particulate matter from fossil fuel combustion emissions.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Doença Pulmonar Obstrutiva Crônica , Idoso , Poluentes Atmosféricos/análise , China , Carvão Mineral , Poeira , Monitoramento Ambiental , Humanos , Inflamação , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis e Gotículas Respiratórios
17.
J Appl Microbiol ; 133(4): 2122-2136, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35007388

RESUMO

AIM: Hexanal and geraniol are essential oil components with anti-quorum sensing (QS) activity against Pseudomonas fluorescens. This study demonstrated that QS inhibition (QSI) efficacy of the hexanal and geraniol combination (HG) was significantly higher when compared to those of their mono-counterparts at the same concentration. METHODS AND RESULTS: Tests on P. fluorescens motility, biofilm formation, acyl-homoserine lactones' (AHLs) production, gene expression in vitro, and molecular docking in silico were conducted to evaluate the synergistic effect of hexanal and geraniol on QSI. HG mixture at 0.5 minimal inhibitory concentration (MIC) showed a strong synergistic inhibition of biofilm formation (51.8%), motility (60.13%), and extracellular protease activity (58.9%) of P. fluorescens. The synthesis of AHLs, e.g., C8 -HSL and C12 -HSL, was inhibited by hexanal, geraniol, and HG; both AHLs are responsible for regulating virulence factors in P. fluorescens. The expression of pcoI and gacA genes regulating AHL synthetase and sensor kinase was significantly down-regulated by HG (0.29 and 0.38-fold) at 0.5 MIC. Hexanal and HG showed significant inhibition of the expression of pcoR and gacS genes, which are responsible for AHL receptor protein and response regulation; however, geraniol failed to downregulate the two genes. Molecular docking in silico also supported these findings. Hexanal, which gets inserted into the minor groove of pcoI/pcoR DNA fragments, inhibits the expression of both the genes. Both hexanal (-31.487 kcal/mol) and geraniol (-25.716 kcal/mol) had a higher binding affinity with PcoI protein than the halogenated furanone C30 (-24.829 kcal/mol), which is a known competitor of AHLs. Similarly, hexanal and geraniol strongly bind to the PcoR protein also. CONCLUSIONS: It was found that HG at 0.5 MIC could effectively inhibit QS by suppressing the expression of pcoR/gacS and gacA/gacS genes and therefore, could inhibit the motility and biofilm formation of P. fluorescens. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study indicated that HG at sub-MIC as QS inhibitor could be further developed as a new preservative of agri-food products.


Assuntos
Óleos Voláteis , Pseudomonas fluorescens , Monoterpenos Acíclicos , Acil-Butirolactonas/metabolismo , Aldeídos , Biofilmes , Ligases/metabolismo , Simulação de Acoplamento Molecular , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Peptídeo Hidrolases/metabolismo , Pseudomonas fluorescens/fisiologia , Fatores de Virulência/metabolismo
18.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563234

RESUMO

Alcohol liver disease (ALD) is characterized by intestinal barrier disruption and gut dysbiosis. Dysfunction of E74-like ETS transcription factor 4 (ELF4) leads to colitis. We aimed to test the hypothesis that intestinal ELF4 plays a critical role in maintaining the normal function of intestinal barrier and gut homeostasis in a mouse model of ALD. Intestinal ELF4 deficiency resulted in dysfunction of the intestinal barrier. Elf4-/- mice exhibited gut microbiota (GM) dysbiosis with the characteristic of a larger proportion of Proteobacteria. The LPS increased in Elf4-/- mice and was the most important differential metabolite between Elf4-/- mice and WT mice. Alcohol exposure increased liver-to-body weight ratio, and hepatic inflammation response and steatosis in WT mice. These deleterious effects were exaggerated in Elf4-/- mice. Alcohol exposure significantly increased serum levels of TG, ALT, and AST in Elf4-/- mice but not in WT mice. In addition, alcohol exposure resulted in enriched expression of genes associated with cholesterol metabolism and lipid metabolism in livers from Elf4-/- mice. 16S rRNA sequencing showed a decrease abundance of Akkermansia and Bilophila in Elf4-/- mice. In conclusion, intestinal ELF4 is an important host protective factor in maintaining gut homeostasis and alleviating alcohol exposure-induced hepatic steatosis and injury.


Assuntos
Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Animais , Disbiose/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Fígado Gorduroso Alcoólico/metabolismo , Homeostase , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
19.
J Sci Food Agric ; 102(14): 6612-6622, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35596658

RESUMO

BACKGROUND: Ultrasound has the potential to increase microbial metabolic activity, so this study explored the stimulatory effect of ultrasound pre-treatment on the degradation of four common pesticides (fenitrothion, chlorpyrifos, profenofos, and dimethoate) during milk fermentation by Lactobacillus plantarum and its effect on yogurt quality. RESULTS: Appropriate ultrasound pretreatment significantly enhanced the growth of L. plantarum. The degradation percentages of pesticides increased by 19-38% under ultrasound treatment. Ultrasonic intensity, pulse duty cycle, and duration time were key factors affecting microbial growth and pesticide degradation. Under optimal ultrasonic pre-treatment conditions, the degradation rate constants of four pesticides were at least 3.4 times higher than those without sonication. In addition, such ultrasound pretreatment significantly shortened yogurt fermentation time, increased the water holding capacity, hardness and antioxidant activity of the yogurt, and improved the flavor quality of the yogurt. CONCLUSION: Ultrasonic pretreatment significantly accelerated the degradation of the four pesticides during yogurt fermentation. In addition, such ultrasound pretreatment increased the efficiency of yogurt making and improved the quality of yogurt in terms of water holding capacity, firmness, antioxidant activity, and flavor. These findings provide a basis for the application of ultrasound to the removal of pesticide residues and quality improvement of yogurt. © 2022 Society of Chemical Industry.


Assuntos
Clorpirifos , Resíduos de Praguicidas , Praguicidas , Terapia por Ultrassom , Animais , Antioxidantes/análise , Clorpirifos/análise , Dimetoato/análise , Fenitrotion/análise , Fenitrotion/metabolismo , Fermentação , Leite/química , Resíduos de Praguicidas/análise , Praguicidas/análise , Água/análise , Iogurte/análise
20.
Compr Rev Food Sci Food Saf ; 21(5): 4402-4421, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36037152

RESUMO

Drying is an important and influential process to prolong the shelf-life of food in the food industry. Recent studies have shown that cold plasma (CP) as an emerging drying pretreatment technology can improve drying performance, reduce drying energy consumption, and improve dried food quality. This paper comprehensively reviewed the mechanism of CP improving drying performance, related equipment, energy consumption, influencing factors, and impact on drying quality. This review also discusses the advantages and disadvantages and proposes possible challenges and suggestions for future research. Most studies indicated that CP pretreatment could improve the drying rate and quality and reduce the drying energy consumption. CP can promote moisture diffusion and improve drying efficiency by etching the surface and affecting the internal microstructure. In addition, CP can enhance the quality of dried products by reducing drying time and enzyme activity. Further research is needed to explore the drying mechanisms and equipment innovations to promote the application of CP in the food drying industry.


Assuntos
Gases em Plasma , Dessecação , Qualidade dos Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA