Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Artif Intell Med ; 103: 101744, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31732411

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Early detection of lung cancer is helpful to provide the best possible clinical treatment for patients. Due to the limited number of radiologist and the huge number of chest x-ray radiographs (CXR) available for observation, a computer-aided detection scheme should be developed to assist radiologists in decision-making. While deep learning showed state-of-the-art performance in several computer vision applications, it has not been used for lung nodule detection on CXR. In this paper, a deep learning-based lung nodule detection method was proposed. We employed patch-based multi-resolution convolutional networks to extract the features and employed four different fusion methods for classification. The proposed method shows much better performance and is much more robust than those previously reported researches. For publicly available Japanese Society of Radiological Technology (JSRT) database, more than 99% of lung nodules can be detected when the false positives per image (FPs/image) was 0.2. The FAUC and R-CPM of the proposed method were 0.982 and 0.987, respectively. The proposed approach has the potential of applications in clinical practice.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares/diagnóstico , Pulmão/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA