Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673941

RESUMO

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Assuntos
ADP-Ribosil Ciclase 1 , Angiotensina II , Aneurisma da Aorta Abdominal , Camundongos Knockout , Miócitos de Músculo Liso , Remodelação Vascular , Animais , Masculino , Camundongos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Transdução de Sinais , Remodelação Vascular/genética
2.
Biochem Cell Biol ; 101(4): 303-312, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927169

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Células Endoteliais , Piroptose/fisiologia
3.
J Cardiovasc Pharmacol ; 82(2): 93-103, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314134

RESUMO

ABSTRACT: Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.


Assuntos
Ubiquitina-Proteína Ligases , Doenças Vasculares , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Proteínas , Doenças Vasculares/tratamento farmacológico
4.
Biol Pharm Bull ; 46(1): 52-60, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288961

RESUMO

Vitamin K, a necessary nutritional supplement for human, has been found to exhibit anti-inflammatory activity. In the present study, we investigated the effects of vitamin K family on lipopolysaccharide (LPS) plus nigericin induced pyroptosis and explored the underlying mechanism of its action in THP-1 monocytes. Results showed that vitamin K3 treatment significantly suppressed THP-1 pyroptosis, but not vitamin K1 or K2, as evidenced by increased cell viability, reduced cellular lactate dehydrogenase (LDH) release and improved cell morphology. Vitamin K3 inhibited NLRP3 expression, caspase-1 activation, GSDMD cleavage and interleukin (IL)-1ß secretion in pyrophoric THP-1 cells. In addition, vitamin K3 inhibited the pro-inflammatory signaling pathways including nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK). Vitamin K3 treatment also attenuated tissue damage and reduced serum LDH, IL-1ß and IL-6 levels in LPS-induced systemic inflammation of mice. The reduced myeloperoxidase (MPO) activityand F4/80 expression indicated that vitamin K3 effectively reduced the infiltration of neutrophils and macrophages. Moreover, NLRP3 expression in monocytes/macrophages were also decreased in vitamin K3-treatedmice after LPS challenge. These findings suggest that vitamin K3 potently alleviates systemic inflammation and organ injury via inhibition of pyroptosis in monocytes and may serve as a novel therapeutic strategy for patients with inflammatory diseases.


Assuntos
Sistema de Sinalização das MAP Quinases , NF-kappa B , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Vitamina K 3/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Células THP-1 , Lipopolissacarídeos/farmacologia , Inflamação
5.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958991

RESUMO

Diabetic cardiomyopathy is one of the diabetes mellitus-induced cardiovascular complications that can result in heart failure in severe cases, which is characterized by cardiomyocyte apoptosis, local inflammation, oxidative stress, and myocardial fibrosis. CD38, a main hydrolase of NAD+ in mammals, plays an important role in various cardiovascular diseases, according to our previous studies. However, the role of CD38 in diabetes-induced cardiomyopathy is still unknown. Here, we report that global deletion of the CD38 gene significantly prevented diabetic cardiomyopathy induced by high-fat diet plus streptozotocin (STZ) injection in CD38 knockout (CD38-KO) mice. We observed that CD38 expression was up-regulated, whereas the expression of Sirt3 was down-regulated in the hearts of diabetic mice. CD38 deficiency significantly promoted glucose metabolism and improved cardiac functions, exemplified by increased left ventricular ejection fraction and fractional shortening. In addition, we observed that CD38 deficiency markedly decreased diabetes or high glucose and palmitic acid (HG + PA)-induced pyroptosis and apoptosis in CD38 knockout hearts or cardiomyocytes, respectively. Furthermore, we found that the expression levels of Sirt3, mainly located in mitochondria, and its target gene FOXO3a were increased in CD38-deficient hearts and cardiomyocytes with CD38 knockdown under diabetic induction conditions. In conclusion, we demonstrated that CD38 deficiency protected mice from diabetes-induced diabetic cardiomyopathy by reducing pyroptosis and apoptosis via activating NAD+/Sirt3/FOXO3a signaling pathways.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Sirtuína 3 , Animais , Camundongos , Apoptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Estresse Oxidativo , Piroptose , Sirtuína 3/metabolismo , Volume Sistólico , Função Ventricular Esquerda
6.
J Virol ; 95(23): e0139621, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549987

RESUMO

Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multiorgan failure in patients with coronavirus disease 2019 (COVID-19). However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved in endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through Toll-like receptor 2 (TLR2)/NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkably, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), HUB1-CoV, and influenza virus H1N1 did not activate endothelial cells. These findings are consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy and suggests that simvastatin, an FDA-approved lipid-lowering drug, may help prevent the pathogenesis and improve the outcome of COVID-19 patients. IMPORTANCE Coronavirus disease 2019 (COVID-19), caused by the betacoronavirus SARS-CoV-2, is a worldwide challenge for health care systems. The leading cause of mortality in patients with COVID-19 is hypoxic respiratory failure from acute respiratory distress syndrome (ARDS). To date, pulmonary endothelial cells (ECs) have been largely overlooked as a therapeutic target in COVID-19, yet emerging evidence suggests that these cells contribute to the initiation and propagation of ARDS by altering vessel barrier integrity, promoting a procoagulative state, inducing vascular inflammation and mediating inflammatory cell infiltration. Therefore, a better mechanistic understanding of the vasculature is of utmost importance. In this study, we screened the SARS-CoV-2 viral proteins that potently activate human endothelial cells and found that nucleocapsid protein (NP) significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Our results provide insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , SARS-CoV-2 , Transdução de Sinais , Sinvastatina/farmacologia , COVID-19/virologia , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(31): 15560-15569, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31300538

RESUMO

The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.


Assuntos
Caderinas/metabolismo , Ventrículos do Coração/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Organogênese , Animais , Caderinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Proteínas do Tecido Nervoso/genética
8.
J Cell Mol Med ; 25(12): 5497-5510, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955151

RESUMO

Studies showed that the increase of myeloid-derived suppressor cells (MDSCs) in tumour microenvironment is closely related to the resistant treatment and poor prognosis of metastatic breast cancer. However, the effect of tumour-derived exosomes on MDSCs and its mechanism are not clear. Here, we reported that breast cancer cells (4T1)-secreted exosomes (BCC-Ex) were able to differentiate bone marrow cells into MDSCs and significantly inhibited the proliferation of T lymphocytes to provide an immunosuppressive microenvironment for cancer cells in vivo and in vitro. The number of MDSCs in bone marrow and spleen of 4T1 tumour-bearing mice and BCC-Ex infused mice was significantly higher than that of normal mice, whereas the number of T lymphocytes in spleen was significantly decreased. In addition, BCC-Ex markedly promoted the differentiation of MDSCs from bone marrow cells or bone marrow cells derived macrophages, seen as the increased expressions of MDSCs-related functional proteins Arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS). Furthermore, BCC-Ex significantly down-regulated the expressions of chemokine receptor CXCR4 and markedly up-regulated the levels of inflammatory cytokines IL-6 and IL-10 in bone marrow cells and macrophages and remarkably inhibited the division and proliferation of T cells. Importantly, CXCR4 agonist, CXCL12, could reverse the function of BCC-Ex, indicating that BCC-Ex-induced MDSCs might be dependent on the down-regulation of CXCR4. Western blot showed that BCC-Ex significantly promoted the phosphorylation of STAT3 in bone marrow cells, resulting in the inhibitions of the proliferation and apoptosis of bone marrow cells, and the aggravation of the differentiation of bone marrow cells into MDSCs.


Assuntos
Células da Medula Óssea/patologia , Neoplasias da Mama/patologia , Exossomos/metabolismo , Células Supressoras Mieloides/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores CXCR4/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Diferenciação Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T/imunologia , Microambiente Tumoral
9.
Can J Physiol Pharmacol ; 99(8): 803-811, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33356884

RESUMO

Inflammation-induced activation and dysfunction of endothelial cells play an important role in the pathology of multiple vascular diseases. Nicaraven, a potent hydroxyl radical scavenger, has recently been found to have anti-inflammatory roles; however, the mechanism of its action is not fully understood. Here we investigated the effects of Nicaraven on tumor necrosis factor α (TNFα) - induced inflammatory response in human umbilical vein endothelial cells and we explore the underlying mechanisms related to the nuclear factor-κB (NF-κB) signaling pathway. Our results showed that Nicaraven significantly reduced the reactive oxygen species production after TNFα stimulation. Nicaraven suppressed TNFα-induced mRNA expression of multiple adhesion molecules and pro-inflammatory cytokines, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, MCP-1, TNFα, interleukin-1ß (IL-1ß), IL-6, and IL-8. In addition, Nicaraven inhibited monocyte adhesion and reduced the protein levels of VCAM-1 and ICAM-1. Mechanistically, Nicaraven prevented TNFα-induced activation of NF-κB signaling pathway by suppressing the phosphorylation of NF-κB p65, IκBα, and IκB kinase (IKK)α/ß, stabilizing IκBα, and inhibiting the translocation of p65 from cytosol to nucleus. Finally, we showed that Nicaraven improved the functions of endothelial cells, seen as the upregulation of endothelial nitric oxide synthase and increased nitric oxide levels. Our findings indicated that Nicaraven effectively inhibits TNFα-induced endothelial activation and inflammatory response at least partly through inhibiting NF-κB signaling pathway.


Assuntos
NF-kappa B , Células Endoteliais da Veia Umbilical Humana , Humanos , Transdução de Sinais
10.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478081

RESUMO

Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.


Assuntos
Âmnio/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Epiteliais/transplante , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Células-Tronco Mesenquimais/tendências , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências
11.
J Cell Mol Med ; 24(18): 10525-10541, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798252

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of the cancer-related death in the world. Human amniotic mesenchymal stem cells (hAMSCs) have been characterized with a pluripotency, low immunogenicity and no tumorigenicity. Especially, the immunosuppressive and anti-inflammatory effects of hAMSCs make them suitable for treating HCC. Here, we reported that hAMSCs administrated by intravenous injection significantly inhibited HCC through suppressing cell proliferation and inducing cell apoptosis in tumour-bearing mice with Hepg2 cells. Cell tracking experiments with GFP-labelled hAMSCs showed that the stem cells possessed the ability of migrating to the tumorigenic sites for suppressing tumour growth. Importantly, both hAMSCs and the conditional media (hAMSC-CM) have the similar antitumour effects in vitro, suggesting that hAMSCs-derived cytokines might be involved in their antitumour effects. Antibody array assay showed that hAMSCs highly expressed dickkopf-3 (DKK-3), dickkopf-1 (DKK-1) and insulin-like growth factor-binding protein 3 (IGFBP-3). Furthermore, the antitumour effects of hAMSCs were further confirmed by applications of the antibodies or the specific siRNAs of DKK-3, DKK-1 and IGFBP-3 in vitro. Mechanically, hAMSCs-derived DKK-3, DKK-1 and IGFBP-3 markedly inhibited cell proliferation and promoted apoptosis of Hepg2 cells through suppressing the Wnt/ß-catenin signalling pathway and IGF-1R-mediated PI3K/AKT signalling pathway, respectively. Taken together, our study demonstrated that hAMSCs possess significant antitumour effects in vivo and in vitro and might provide a novel strategy for HCC treatment clinically.


Assuntos
Âmnio/citologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Transplante de Células-Tronco Mesenquimais , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adipogenia , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Feminino , Genes Reporter , Células Hep G2/transplante , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neoplasias Hepáticas/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Osteogênese , Comunicação Parácrina , Gravidez , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochem Cell Biol ; 98(4): 458-465, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31905009

RESUMO

Brain-type glycogen phosphorylase (pygb) is one of the rate-limiting enzymes in glycogenolysis that plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Here we investigated the role of pygb in high-glucose (HG)-induced cardiomyocyte apoptosis and explored the underlying mechanisms, by using the specific pygb inhibitors or pygb siRNA. Our results show that inhibition of pygb significantly attenuates cell apoptosis and oxidative stress induced by HG in H9c2 cardiomyocytes. Inhibition of pygb improved glucose metabolism in cardiacmyocytes, as evidenced by increased glycogen content, glucose consumption, and glucose transport. Mechanistically, pygb inhibition activates the Akt-GSK-3ß signaling pathway and suppresses the activation of NF-κB in H9c2 cells exposed to HG. Additionally, pygb inhibition promotes the expression and the translocation of hypoxia-inducible factor-1α (HIF-1α) after HG stimulation. However, the changes in glucose metabolism and HIF-1α activation mediated by pygb inhibition are significantly reversed in the presence of the Akt inhibitor MK2206. In conclusion, this study found that inhibition of pygb prevents HG-induced cardiomyocyte apoptosis via activation of Akt-HIF-α.


Assuntos
Apoptose , Encéfalo/enzimologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Glucose/toxicidade , Glicogênio Fosforilase/antagonistas & inibidores , Miócitos Cardíacos/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Edulcorantes/toxicidade
13.
Appl Microbiol Biotechnol ; 104(8): 3517-3528, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32095863

RESUMO

VNP20009, an attenuated mutant of Salmonella, is potentially applied for tumor therapy due to its specific accumulation and proliferation in the hypoxic zone of tumor. However, studies have shown that human immunity system and the associated toxicities of attenuated Salmonella evidently alleviated the anti-tumor effect when tumor is reduced. As apoptosis-inducing factor (AIF) can directly induce nuclear apoptosis in the absence of caspases to avoid unwished apoptosis in normal cells, therefore, a eukaryotic expressing VNP20009-AbVec-Igκ-AIF (V-A-AIF) strain was constructed in the present study, and its anti-melanoma effects were evaluated in vitro and in vivo. The results showed that AIF expressed by the V-A-AIF strain significantly enhanced the apoptosis of B16F10 cells in vitro, seen as remarkable decrease of tumor volume, formation of larger necrotic areas, and prolongation of the lifespan in a melanoma-bearing mouse model. Furthermore, we observed that the colonization of the V-A-AIF strain and the massive expression of AIF in tumors significantly promoted apoptosis of tumor cells by upregulating the expression ratio of Bcl-2-associated X protein/B cell lymphoma-2 (Bax/Bcl-2), suppressed the inflammatory response by downregulating toll-like receptor-4/nuclear factor kappa-B (TLR-4/NFκB) signaling pathway, seen as reduction of the expressions of phosphorylated phosphoinositide 3 kinase (PI3K) and protein kinase B (AKT), and decrease of the production of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Our study demonstrated that the colonization of the V-A-AIF strain in tumor triggers a decent anti-tumor effect in vivo and in vitro, suggesting that the engineered strain may provide a potential reagent for cancer therapy.


Assuntos
Anticarcinógenos/uso terapêutico , Fator de Indução de Apoptose/genética , Apoptose , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Salmonella/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Salmonella/fisiologia
14.
Biochem J ; 476(19): 2927-2938, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31530713

RESUMO

Detection and degradation of foreign nucleic acids is an ancient form of host defense. However, the underlying mechanisms are not completely clear. MCPIP1 is an endoribonuclease and an important regulator in both innate and adaptive immunity by targeting inflammatory mRNA degradation. Here we report that MCPIP1 RNase can also selectively detect and degrade the mRNAs encoded by transfected plasmids. In transient transfection, MCPIP1 expression potently degraded the mRNA from exogenously transfected vectors, which is independent on the vector, genes and cell types used. Conversely, the expression of transfected plasmids in MCPIP1-null cells is significantly higher than that in wild-type cells. Interestingly, overexpression of MCPIP1 or MCPIP1 deficiency does not affect the expression of the exogenous genes incorporated into the host genome in a stable cell line or the global gene expression of host genome. This ability is not associated with PKR/RNase L system, as PKR inhibitors does not block MCPIP1-mediated mRNA degradation of exogenously transfected genes. Lastly, expression of MCPIP1 suppressed replication of Zika virus in infected cells. The study may provide a model for understanding the antiviral mechanisms of MCPIP1, and a putative tool to increase the expression of transfected exogenous genes.


Assuntos
Estabilidade de RNA , RNA Mensageiro/química , RNA Viral/química , Ribonucleases/fisiologia , Fatores de Transcrição/fisiologia , Replicação Viral/fisiologia , Infecção por Zika virus/genética , Zika virus/genética , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Transfecção
15.
Neurobiol Learn Mem ; 162: 9-14, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31047997

RESUMO

Nociceptin/Orphanin FQ (N/OFQ) plays an important role in the regulation of spatial, fear and recognition memories. N/OFQ receptors are highly distributed in the perirhinal cortex, which is a key brain area involved in modulating novel object recognition (NOR) memory. However, the role of N/OFQ in NOR memory in the perirhinal cortex was still unknown. Moreover, the effects of N/OFQ on different stages of NOR memory were still unclear. In NOR task, we found that pre-training intracerebroventricular (icv) injection of N/OFQ (0.3 and 1 nmol) impaired long-term memory in a dose-dependent manner. However, icv infusion of N/OFQ immediately after training did not affect NOR memory consolidation even at a high dose of 3 nmol. Pre-test icv injection of N/OFQ (1 nmol) also did not influence NOR memory retrieval. These data indicate that N/OFQ negatively modulates long-term NOR memory during the acquisition phase. Furthermore, the amnesia effect of N/OFQ (1 nmol, icv) could be antagonist by pre-treatment with the selective N/OFQ receptor antagonist [Nphe1]N/OFQ(1-13)NH2 (10 nmol, icv), indicating pharmacological specificity. Then, we found that pre-training infusion of N/OFQ (0.1 and 0.3 nmol/side) into the bilateral perirhinal cortex impaired long-term NOR memory, suggesting the perirhinal cortex is a critical brain structure in mediating the amnesic effect of N/OFQ in NOR task. In conclusion, our data, for the first time, indicate that N/OFQ in the perirhinal cortex impairs NOR memory acquisition through the NOP receptors.


Assuntos
Memória de Longo Prazo/efeitos dos fármacos , Peptídeos Opioides/farmacologia , Córtex Perirrinal/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Injeções Intraventriculares , Masculino , Camundongos , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Nociceptina
16.
Acta Pharmacol Sin ; 40(6): 814-822, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30446732

RESUMO

Cancer cells always require more nutrients, energy, and biosynthetic activity to sustain their rapid proliferation than normal cells. Previous studies have shown the impact of THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), on transcription regulation and cell-cycle arrest in numerous cancers, but its effects on cellular metabolism in cancer cells remain unknown. In this study we elucidated the anticancer mechanism of THZ1 in human non-small-cell lung cancer (NSCLC) cells. We showed that treatment with THZ1 (10-1000 nM) dose-dependently suppressed the proliferation of human NSCLC cell lines H1299, A549, H292, and H23, and markedly inhibited the migration of these NSCLC cells. Furthermore, treatment with THZ1 (50 nM) arrested cell cycle at G2/M phase and induced apoptosis in these NSCLC cell lines. More importantly, we revealed that treatment with THZ1 (50 nM) blocked the glycolysis pathway but had no effect on glutamine metabolism. We further demonstrated that THZ1 treatment altered the expression pattern of glutaminase 1 (GLS1) isoforms through promoting the ubiquitination and degradation of NUDT21. Combined treatment of THZ1 with a glutaminase inhibitor CB-839 (500 nM) exerted a more potent anti-proliferative effect in these NSCLC cell lines than treatment with THZ1 or CB-839 alone. Our results demonstrate that the inhibitory effect of THZ1 on the growth of human NSCLC cells is partially attributed to interfering with cancer metabolism. Thus, we provide a new potential therapeutic strategy for NSCLC treatment by combining THZ1 with the inhibitors of glutamine metabolism.


Assuntos
Antineoplásicos/farmacologia , Fenilenodiaminas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Benzenoacetamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tiadiazóis/farmacologia , Quinase Ativadora de Quinase Dependente de Ciclina
17.
J Cell Mol Med ; 22(7): 3638-3651, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682889

RESUMO

We previously observed that disruption of FK506-binding protein 12.6 (FKBP12.6) gene resulted in cardiac hypertrophy in male mice. Studies showed that overexpression of FKBP12.6 attenuated thoracic aortic constriction (TAC)-induced cardiac hypertrophy in mice, whereas the adenovirus-mediated overexpression of FKBP12.6 induced hypertrophy and apoptosis in cultured neonatal cardiomyocytes, indicating that the role of FKBP12.6 in cardiac hypertrophy is still controversial. In this study, we aimed to investigate the roles and mechanisms of FKBP12.6 in angiotensin II (AngII)-induced cardiac hypertrophy using various transgenic mouse models in vivo and in vitro. FKBP12.6 knockout (FKBP12.6-/- ) mice and cardiac-specific FKBP12.6 overexpressing (FKBP12.6 TG) mice were infused with AngII (1500 ng/kg/min) for 14 days subcutaneously by implantation of an osmotic mini-pump. The results showed that FKBP12.6 deficiency aggravated AngII-induced cardiac hypertrophy, while cardiac-specific overexpression of FKBP12.6 prevented hearts from the hypertrophic response to AngII stimulation in mice. Consistent with the results in vivo, overexpression of FKBP12.6 in H9c2 cells significantly repressed the AngII-induced cardiomyocyte hypertrophy, seen as reductions in the cell sizes and the expressions of hypertrophic genes. Furthermore, we demonstrated that the protection of FKBP12.6 on AngII-induced cardiac hypertrophy was involved in reducing the concentration of intracellular Ca2+ ([Ca2+ ]i), in which the protein significantly inhibited the key Ca2+ /calmodulin-dependent signalling pathways such as calcineurin/cardiac form of nuclear factor of activated T cells 4 (NFATc4), calmodulin kinaseII (CaMKII)/MEF-2, AKT/Glycogen synthase kinase 3ß (GSK3ß)/NFATc4 and AKT/mTOR signalling pathways. Our study demonstrated that FKBP12.6 protects heart from AngII-induced cardiac hypertrophy through inhibiting Ca2+ /calmodulin-mediated signalling pathways.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Cardiomegalia/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Angiotensina II/metabolismo , Angiotensina II/toxicidade , Animais , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Linhagem Celular , Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a Tacrolimo/genética
18.
J Cell Mol Med ; 22(1): 101-110, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28816006

RESUMO

It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38-deficient mice were resistant to high-fat diet (HFD)-induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38-/- and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38-/- mice, 3T3-L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD-fed mice or the MEFs, 3T3-L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38-/- male mice were significantly resistant to HFD-induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3-L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD-fed CD38-/- mice and CD38-/- MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38-/- MEFs. Finally, the CD38 deficiency-mediated activations of Sirt1 signalling were up-regulated or down-regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ-FASN signalling pathway during the development of obesity.


Assuntos
ADP-Ribosil Ciclase 1/deficiência , Adipogenia , Tecido Adiposo/metabolismo , Lipogênese , PPAR gama/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Adipócitos/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Camundongos , NAD/metabolismo
19.
Cell Physiol Biochem ; 48(6): 2350-2363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114710

RESUMO

BACKGROUND/AIMS: Previous studies showed that CD38 deficiency protected heart from ischemia/reperfusion injury and high fat diet (HFD)-induced obesity in mice. However, the role of CD38 in HFD-induced heart injury remains unclear. In the present study, we have investigated the effects and mechanisms of CD38 deficiency on HFD-induced heart injury. METHODS: The metabolites in heart from wild type (WT) and CD38 knockout (CD38-/-) mice were examined using metabolomics analysis. Cell viability, lactate hydrogenase (LDH) release, super oxide dismutase (SOD) activity, reactive oxygen species (ROS) production, triglyceride concentration and gene expression were examined by biochemical analysis and QPCR. RESULTS: Our results revealed that CD38 deficiency significantly elevated the intracellular glutathione (GSH) concentration and GSH/GSSG ratio, decreased the contents of free fatty acids and increased intracellular NAD+ level in heart from CD38-/- mice fed with HFD. In addition, in vitro knockdown of CD38 significantly attenuated OA-induced cellular injury, ROS production and lipid synthesis. Furthermore, the expression of mitochondrial deacetylase Sirt3 as well as its target genes FOXO3 and SOD2 were markedly upregulated in the H9C2 cell lines after OA stimulation. In contrast, the expressions of NOX2 and NOX4 were significantly decreased in the cells after OA stimulation. CONCLUSION: Our results demonstrated that CD38 deficiency protected heart from HFD-induced oxidative stress via activating Sirt3/FOXO3-mediated anti-oxidative stress pathway.


Assuntos
ADP-Ribosil Ciclase 1/genética , Dieta Hiperlipídica , Proteína Forkhead Box O3/metabolismo , Glicoproteínas de Membrana/genética , Estresse Oxidativo , Sirtuína 3/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Animais , Linhagem Celular , Glutationa/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo
20.
Mediators Inflamm ; 2018: 8736949, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977153

RESUMO

CD38 was first identified as a lymphocyte-specific antigen and then has been found to be widely expressed in a variety of cell types. The functions of CD38 are involved in numerous biological processes including immune responses. Here, we showed the downregulations of both TLR2 mRNA and protein in macrophages from CD38-/- mice and in CD38 knockdown RAW264.7 cells. Several NF-κB-binding motifs in the promoter region of the TLR2 gene were identified by the bioinformatics analysis and were confirmed by the luciferase activity assay with the different truncated TLR2 promoters. CD38 deficiency resulted in the reduction of NF-κB p65 and acetyl-NF-κB p65 (Ac-p65) levels as determined by Western blot. The expression of Sirt1 did not change, but an increased activity of Sirt1 was observed in CD38-deficient macrophages. Inhibition of the Sirt1/NF-κB signaling pathway resulted in downregulation of TLR2 expression in RAW264.7 cells. However, re-expression of CD38 in the knockdown clones reversed the effect on Sirt1/NF-κB/TLR2 signaling, which is NAD-dependent. Moreover, the inflammatory cytokines including G-CSF, IL-1alpha, IL-6, MCP-1, MIP-1alpha, and RANTES were increased in CD38 knockdown RAW264.7 cells. Taken together, our data demonstrated that CD38 deficiency enhances inflammatory response in macrophages, and the mechanism may be partly associated with increased Sirt1 activity, which promoted NF-κB deacetylation and then inhibited expression of the TLR2 gene. Obviously, our study may provide an insight into the molecular mechanisms in CD38-mediated inflammation.


Assuntos
ADP-Ribosil Ciclase 1/deficiência , Inflamação/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Western Blotting , Biologia Computacional , Inflamação/genética , Camundongos , Células RAW 264.7 , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA