Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Methods ; 20(6): 918-924, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081094

RESUMO

Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.


Assuntos
Cálcio , Neurônios , Animais , Cálcio/metabolismo , Neurônios/fisiologia , Sinalização do Cálcio/fisiologia , Indicadores e Reagentes , Mamíferos/metabolismo
2.
J Neurosci ; 43(31): 5668-5684, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487737

RESUMO

Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes. In a cortical column, we found that black-white asymmetry starts at the input layer and becomes more pronounced in the output layer. We also found distinct dynamics of black-white asymmetry between the output layer and the input layer. Specifically, black responses dominate in all layers after stimulus onset. After stimulus offset, black and white responses are balanced in the input layer, but black responses still dominate in the output layer. Compared with that in the input layer, the rebound response in the output layer is significantly suppressed. The relative suppression strength evoked by white stimuli is notably stronger and depends on the location within the ON-OFF cortical map. A model with delayed and polarity-selective cortical suppression explains black-white asymmetry in the output layer, within which prominent recurrent connections are identified by Granger causality analysis. In addition to black-white asymmetry in response strength, the interlaminar differences in spatial receptive field varied dynamically. Our findings suggest that the feedforward and recurrent mechanisms are dynamically recruited for the generation of black-white asymmetry in V1.SIGNIFICANCE STATEMENT Black-white asymmetry is universal and essential in visual information processing, yet the neural substrates for cortical black-white asymmetry remain unknown. Leveraging V1 laminar recordings, we provided the first laminar pattern of black-white asymmetry in cat V1 and found distinct dynamics of black-white asymmetry between the output layer and the input layer. Comparing black-white asymmetry across three visual hierarchies, the LGN, V1 input layer, and V1 output layer, we demonstrated that the feedforward and recurrent mechanisms are dynamically recruited for the generation of cortical black-white asymmetry. Our findings not only enhance our understanding of laminar processing within a cortical column but also elucidate how feedforward connections and recurrent connections interact to shape neuronal response properties.


Assuntos
Córtex Visual Primário , Córtex Visual , Masculino , Feminino , Animais , Córtex Visual/fisiologia , Estimulação Luminosa , Percepção Visual/fisiologia , Neurônios/fisiologia , Vias Visuais/fisiologia
3.
PLoS Biol ; 19(12): e3001466, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932558

RESUMO

Gamma rhythms in many brain regions, including the primary visual cortex (V1), are thought to play a role in information processing. Here, we report a surprising finding of 3 narrowband gamma rhythms in V1 that processed distinct spatial frequency (SF) signals and had different neural origins. The low gamma (LG; 25 to 40 Hz) rhythm was generated at the V1 superficial layer and preferred a higher SF compared with spike activity, whereas both the medium gamma (MG; 40 to 65 Hz), generated at the cortical level, and the high gamma HG; (65 to 85 Hz), originated precortically, preferred lower SF information. Furthermore, compared with the rates of spike activity, the powers of the 3 gammas had better performance in discriminating the edge and surface of simple objects. These findings suggest that gamma rhythms reflect the neural dynamics of neural circuitries that process different SF information in the visual system, which may be crucial for multiplexing SF information and synchronizing different features of an object.


Assuntos
Ritmo Gama/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual/fisiologia , Animais , Encéfalo/fisiologia , Gatos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual Primário/patologia , Córtex Visual/fisiologia
4.
PLoS Comput Biol ; 17(11): e1009640, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843460

RESUMO

Finding out the physical structure of neuronal circuits that governs neuronal responses is an important goal for brain research. With fast advances for large-scale recording techniques, identification of a neuronal circuit with multiple neurons and stages or layers becomes possible and highly demanding. Although methods for mapping the connection structure of circuits have been greatly developed in recent years, they are mostly limited to simple scenarios of a few neurons in a pairwise fashion; and dissecting dynamical circuits, particularly mapping out a complete functional circuit that converges to a single neuron, is still a challenging question. Here, we show that a recent method, termed spike-triggered non-negative matrix factorization (STNMF), can address these issues. By simulating different scenarios of spiking neural networks with various connections between neurons and stages, we demonstrate that STNMF is a persuasive method to dissect functional connections within a circuit. Using spiking activities recorded at neurons of the output layer, STNMF can obtain a complete circuit consisting of all cascade computational components of presynaptic neurons, as well as their spiking activities. For simulated simple and complex cells of the primary visual cortex, STNMF allows us to dissect the pathway of visual computation. Taken together, these results suggest that STNMF could provide a useful approach for investigating neuronal systems leveraging recorded functional neuronal activity.


Assuntos
Potenciais de Ação , Biologia Computacional/métodos , Modelos Neurológicos , Rede Nervosa , Neurônios/fisiologia , Algoritmos , Terminações Pré-Sinápticas/fisiologia , Córtex Visual Primário/fisiologia
5.
World J Surg Oncol ; 20(1): 272, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042478

RESUMO

BACKGROUND: Accurately positioning totally implantable venous access device (TIVAD) catheters and reducing complications in pediatric patients are important and challenging. A number of studies have shown methods for locating the tip of the TIVAD catheter. We assessed the success and complications of TIVAD implantation guided by transesophageal echocardiography (TEE) via the internal jugular vein (IJV) for 294 patients in this retrospective study. METHODS: From May 2019 to March 2021, 297 cases of TIVADs in our hospital were analyzed in this observational, non-randomized, single-center study. The position of the catheter tip under TEE and chest radiography and rates of periprocedural, early, and late complications were evaluated. RESULTS: The implantation was successful in 242 (82.3%) cases which was in a proper position, and the results were consistent with those of postoperative chest radiography. A total of 72 complications were recorded. Of these, 1 case had a perioperative complication, 66 had early complications, and 5 had late complications after port implantation. The most common complications were local infection and catheter malposition, namely 10 (13.9%) cases of incision infection and 58 (80.6%) cases of catheter malposition. In total, 6 (8.3%) cases of port explantation were required. CONCLUSION: Confirmation of proper TIVAD catheter positioning by TEE through an internal jugular approach in children was accurate and safe.


Assuntos
Cateterismo Venoso Central , Veias Jugulares , Cateterismo Venoso Central/efeitos adversos , Cateterismo Venoso Central/métodos , Cateteres de Demora/efeitos adversos , Criança , Ecocardiografia Transesofagiana , Humanos , Veias Jugulares/diagnóstico por imagem , Veias Jugulares/cirurgia , Estudos Retrospectivos
6.
J Neurosci ; 40(39): 7436-7450, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32817246

RESUMO

Cortical inhibition plays an important role in information processing in the brain. However, the mechanisms by which inhibition and excitation are coordinated to generate functions in the six layers of the cortex remain unclear. Here, we measured laminar-specific responses to stimulus orientations in primary visual cortex (V1) of awake monkeys (male, Macaca mulatta). We distinguished inhibitory effects (suppression) from excitation, by taking advantage of the separability of excitation and inhibition in the orientation and time domains. We found two distinct types of suppression governing different layers. Fast suppression (FS) was strongest in input layers (4C and 6), and slow suppression (SS) was 3 times stronger in output layers (2/3 and 5). Interestingly, the two types of suppression were correlated with different functional properties measured with drifting gratings. FS was primarily correlated with orientation selectivity in input layers (r = -0.65, p < 10-9), whereas SS was primarily correlated with surround suppression in output layers (r = 0.61, p < 10-4). The earliest SS in layer 1 indicates the origin of cortical feedback for SS, in contrast to the feedforward/recurrent origin of FS. Our results reveal two V1 laminar subnetworks with different response suppression that may provide a general framework for laminar processing in other sensory cortices.SIGNIFICANCE STATEMENT This study sought to understand inhibitory effects (suppression) and their relationships with functional properties in the six different layers of the cortex. We found that the diversity of neural responses across layers in primary visual cortex (V1) could be fully explained by one excitatory and two suppressive components (fast and slow suppression). The distinct laminar distributions, origins, and functional roles of the two types of suppression provided a simplified representation of the differences between two V1 subnetworks (input network and output network). These results not only help to elucidate computational principles in macaque V1, but also provide a framework for general computation of cortical laminae in other sensory cortices.


Assuntos
Córtex Visual/fisiologia , Animais , Potenciais Evocados Visuais , Macaca mulatta , Masculino , Inibição Neural , Vias Visuais/fisiologia
7.
J Neurosci ; 40(12): 2445-2457, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32041896

RESUMO

Layer 6 appears to perform a very important role in the function of macaque primary visual cortex, V1, but not enough is understood about the functional characteristics of neurons in the layer 6 population. It is unclear to what extent the population is homogeneous with respect to their visual properties or if one can identify distinct subpopulations. Here we performed a cluster analysis based on measurements of the responses of single neurons in layer 6 of primary visual cortex in male macaque monkeys (Macaca fascicularis) to achromatic grating stimuli that varied in orientation, direction of motion, spatial and temporal frequency, and contrast. The visual stimuli were presented in a stimulus window that was also varied in size. Using the responses to parametric variation in these stimulus variables, we extracted a number of tuning response measures and used them in the cluster analysis. Six main clusters emerged along with some smaller clusters. Additionally, we asked whether parameter distributions from each of the clusters were statistically different. There were clear separations of parameters between some of the clusters, particularly for f1/f0 ratio, direction selectivity, and temporal frequency bandwidth, but other dimensions also showed differences between clusters. Our data suggest that in layer 6 there are multiple parallel circuits that provide information about different aspects of the visual stimulus.SIGNIFICANCE STATEMENT The cortex is multilayered and is involved in many high-level computations. In the current study, we have asked whether there are subpopulations of neurons, clusters, in layer 6 of cortex with different functional tuning properties that provide information about different aspects of the visual image. We identified six major functional clusters within layer 6. These findings show that there is much more complexity to the circuits in cortex than previously demonstrated and open up a new avenue for experimental investigation within layers of other cortical areas and for the elaboration of models of circuit function that incorporate many parallel pathways with different functional roles.


Assuntos
Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico , Análise por Conglomerados , Sensibilidades de Contraste , Eletrocardiografia , Potenciais Evocados Visuais , Macaca fascicularis , Masculino , Percepção de Movimento/fisiologia , Orientação , Estimulação Luminosa , Percepção Espacial/fisiologia , Percepção do Tempo/fisiologia
8.
Neural Plast ; 2021: 8874516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531893

RESUMO

Gamma oscillation (GAMMA) in the local field potential (LFP) is a synchronized activity commonly found in many brain regions, and it has been thought as a functional signature of network connectivity in the brain, which plays important roles in information processing. Studies have shown that the response property of GAMMA is related to neural interaction through local recurrent connections (RC), feed-forward (FF), and feedback (FB) connections. However, the relationship between GAMMA and long-range horizontal connections (HC) in the brain remains unclear. Here, we aimed to understand this question in a large-scale network model for the primary visual cortex (V1). We created a computational model composed of multiple excitatory and inhibitory units with biologically plausible connectivity patterns for RC, FF, FB, and HC in V1; then, we quantitated GAMMA in network models at different strength levels of HC and other connection types. Surprisingly, we found that HC and FB, the two types of large-scale connections, play very different roles in generating and modulating GAMMA. While both FB and HC modulate a fast gamma oscillation (around 50-60 Hz) generated by FF and RC, HC generates a new GAMMA oscillating around 30 Hz, whose power and peak frequency can also be modulated by FB. Furthermore, response properties of the two GAMMAs in a network with both HC and FB are different in a way that is highly consistent with a recent experimental finding for distinct GAMMAs in macaque V1. The results suggest that distinct GAMMAs are signatures for neural connections in different spatial scales and they might be related to different functions for information integration. Our study, for the first time, pinpoints the underlying circuits for distinct GAMMAs in a mechanistic model for macaque V1, which might provide a new framework to study multiple gamma oscillations in other cortical regions.


Assuntos
Retroalimentação Fisiológica/fisiologia , Ritmo Gama/fisiologia , Rede Nervosa/fisiologia , Redes Neurais de Computação , Córtex Visual/fisiologia , Animais , Humanos , Estimulação Luminosa/métodos
9.
Proc Natl Acad Sci U S A ; 111(3): 1210-5, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398523

RESUMO

Darkness and brightness are very different perceptually. To understand the neural basis for the visual difference, we studied the dynamical states of populations of neurons in macaque primary visual cortex when a spatially uniform area (8° × 8°) of the visual field alternated between black and white. Darkness evoked sustained nerve-impulse spiking in primary visual cortex neurons, but bright stimuli evoked only a transient response. A peak in the local field potential (LFP) γ band (30-80 Hz) occurred during darkness; white-induced LFP fluctuations were of lower amplitude, peaking at 25 Hz. However, the sustained response to white in the evoked LFP was larger than for black. Together with the results on spiking, the LFP results imply that, throughout the stimulus period, bright fields evoked strong net sustained inhibition. Such cortical brightness adaptation can explain many perceptual phenomena: interocular speeding up of dark adaptation, tonic interocular suppression, and interocular masking.


Assuntos
Potenciais de Ação/fisiologia , Adaptação Fisiológica , Córtex Visual/fisiologia , Animais , Escuridão , Eletrofisiologia , Potenciais Evocados Visuais , Macaca fascicularis , Neurônios/fisiologia , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Visão Ocular , Campos Visuais , Percepção Visual/fisiologia
10.
J Neurosci ; 35(5): 2226-32, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653377

RESUMO

The interaction between brightness and color causes there to be different color appearance when one and the same object is viewed against surroundings of different brightness. Brightness contrast causes color to be desaturated, as has been found in perceptual experiments on color induction and color-gamut expansion in human vision. However, it is not clear yet where in the cerebral cortex the brightness-color interaction that causes these major perceptual effects is located. One hypothesis is that brightness and color signals are processed separately and in parallel within the primary visual cortex V1 and only interact in extrastriate cortex. Another hypothesis is that color and brightness contrast interact strongly already within V1. We localized the brightness-color interaction in human V1 by means of recording the chromatic visual-evoked potential. The chromatic visual-evoked potential measurements decisively support the idea that brightness-color interaction arises in a recurrent inhibitory network in V1. Furthermore, our results show that the inhibitory signal for brightness-color interaction is generated by local brightness contrast at the boundary between target and surround, instead of by the luminance difference between the interior of the color target and its large background.


Assuntos
Percepção de Cores , Sensibilidades de Contraste , Potenciais Evocados Visuais , Córtex Visual/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 109(34): 13871-6, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22872866

RESUMO

Studying the laminar pattern of neural activity is crucial for understanding the processing of neural signals in the cerebral cortex. We measured neural population activity [multiunit spike activity (MUA) and local field potential, LFP] in Macaque primary visual cortex (V1) in response to drifting grating stimuli. Sustained visually driven MUA was at an approximately constant level across cortical depth in V1. However, sustained, visually driven, local field potential power, which was concentrated in the γ-band (20-60 Hz), was greatest at the cortical depth corresponding to cortico-cortical output layers 2, 3, and 4B. γ-band power also tends to be more sustained in the output layers. Overall, cortico-cortical output layers accounted for 67% of total γ-band activity in V1, whereas 56% of total spikes evoked by drifting gratings were from layers 2, 3, and 4B. The high-resolution layer specificity of γ-band power, the laminar distribution of MUA and γ-band activity, and their dynamics imply that neural activity in V1 is generated by laminar-specific mechanisms. In particular, visual responses of MUA and γ-band activity in cortico-cortical output layers 2, 3, and 4B seem to be strongly influenced by laminar-specific recurrent circuitry and/or feedback.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Evocados Visuais , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico/métodos , Eletrodos , Eletrofisiologia/métodos , Macaca , Modelos Biológicos , Neurônios/metabolismo , Neurônios/fisiologia , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Percepção Visual/fisiologia
12.
J Neurosci ; 33(1): 17-25, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23283318

RESUMO

Neural activity in the gamma frequency range ("gamma") is elevated during active cognitive states. Gamma has been proposed to play an important role in cortical function, although this is debated. Understanding what function gamma might fulfill requires a better understanding of its properties and the mechanisms that generate it. Gamma is characterized by its spectral power and peak frequency, and variations in both parameters have been associated with changes in behavioral performance. Modeling studies suggest these properties are co-modulated, but this has not been established. To test the relationship between these properties, we measured local field potentials (LFPs) and neuronal spiking responses in primary visual cortex of anesthetized monkeys, for drifting sinusoidal gratings of different sizes, contrasts, orientations and masked with different levels of noise. We find that there is no fixed relationship between LFP gamma power and peak frequency, and neither is related to the strength of spiking activity. We propose a simple model that can account for the complex stimulus dependence we observe, and suggest that separate mechanisms determine gamma power and peak frequency.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Evocados Visuais/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Eletroencefalografia , Macaca fascicularis , Masculino , Orientação/fisiologia , Estimulação Luminosa
13.
J Neurosci ; 33(14): 6230-42, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23554504

RESUMO

Neurons in primary visual cortex, V1, very often have extraclassical receptive fields (eCRFs). The eCRF is defined as the region of visual space where stimuli cannot elicit a spiking response but can modulate the response of a stimulus in the classical receptive field (CRF). We investigated the dependence of the eCRF on stimulus contrast and orientation in macaque V1 cells for which the laminar location was determined. The eCRF was more sensitive to contrast than the CRF across the whole population of V1 cells with the greatest contrast differential in layer 2/3. We confirmed that many V1 cells experience stronger suppression for collinear than orthogonal stimuli in the eCRF. Laminar analysis revealed that the predominant bias for collinear suppression was found in layers 2/3 and 4b. The laminar pattern of contrast and orientation dependence suggests that eCRF suppression may derive from different neural circuits in different layers, and may be comprised of two distinct components: orientation-tuned and untuned suppression. On average tuned suppression was delayed by ∼25 ms compared with the onset of untuned suppression. Therefore, response modulation by the eCRF develops dynamically and rapidly in time.


Assuntos
Mapeamento Encefálico , Sensibilidades de Contraste/fisiologia , Neurônios/fisiologia , Orientação/fisiologia , Córtex Visual/citologia , Campos Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletrólise , Macaca fascicularis , Masculino , Modelos Neurológicos , Inibição Neural/fisiologia , Dinâmica não Linear , Estimulação Luminosa , Tempo de Reação , Córtex Visual/lesões , Córtex Visual/fisiologia
14.
Cogn Neurodyn ; 18(2): 741-756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699623

RESUMO

Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.

15.
Nat Commun ; 15(1): 4005, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740786

RESUMO

The neocortex comprises six cortical layers that play a crucial role in information processing; however, it remains unclear whether laminar processing is consistent across all regions within a single cortex. In this study, we demonstrate diverse laminar response patterns in the primary visual cortex (V1) of three male macaque monkeys when exposed to visual stimuli at different spatial frequencies (SFs). These response patterns can be categorized into two groups. One group exhibit suppressed responses in the output layers for all SFs, while the other type shows amplified responses specifically at high SFs. Further analysis suggests that both magnocellular (M) and parvocellular (P) pathways contribute to the suppressive effect through feedforward mechanisms, whereas amplification is specific to local recurrent mechanisms within the parvocellular pathway. These findings highlight the non-uniform distribution of neural mechanisms involved in laminar processing and emphasize how pathway-specific amplification selectively enhances representations of high-SF information in primate V1.


Assuntos
Estimulação Luminosa , Córtex Visual Primário , Vias Visuais , Animais , Masculino , Córtex Visual Primário/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Córtex Visual/fisiologia , Macaca mulatta
16.
Sci Adv ; 10(24): eadk3953, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875332

RESUMO

The human ability to perceive vivid memories as if they "float" before our eyes, even in the absence of actual visual stimuli, captivates the imagination. To determine the neural substrates underlying visual memories, we investigated the neuronal representation of working memory content in the primary visual cortex of monkeys. Our study revealed that neurons exhibit unique responses to different memory contents, using firing patterns distinct from those observed during the perception of external visual stimuli. Moreover, this neuronal representation evolves with alterations in the recalled content and extends beyond the retinotopic areas typically reserved for processing external visual input. These discoveries shed light on the visual encoding of memories and indicate avenues for understanding the remarkable power of the mind's eye.


Assuntos
Memória de Curto Prazo , Neurônios , Córtex Visual Primário , Percepção Visual , Animais , Neurônios/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa , Macaca mulatta , Córtex Visual/fisiologia
17.
Nat Commun ; 15(1): 516, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225259

RESUMO

The coding privilege of end-spectral hues (red and blue) in the early visual cortex has been reported in primates. However, the origin of such bias remains unclear. Here, we provide a complete picture of the end-spectral bias in visual system by measuring fMRI signals and spiking activities in macaques. The correlated end-spectral biases between the LGN and V1 suggest a subcortical source for asymmetric coding. Along the ventral pathway from V1 to V4, red bias against green peaked in V1 and then declined, whereas blue bias against yellow showed an increasing trend. The feedforward and recurrent modifications of end-spectral bias were further revealed by dynamic causal modeling analysis. Moreover, we found that the strongest end-spectral bias in V1 was in layer 4C[Formula: see text]. Our results suggest that end-spectral bias already exists in the LGN and is transmitted to V1 mainly through the parvocellular pathway, then embellished by cortical processing.


Assuntos
Córtex Visual , Vias Visuais , Animais , Córtex Visual/diagnóstico por imagem , Primatas , Macaca , Imageamento por Ressonância Magnética/métodos , Corpos Geniculados , Estimulação Luminosa/métodos
18.
J Neurosci ; 32(40): 13873-80a, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23035096

RESUMO

Oscillatory neural activity within the gamma band (25-90 Hz) is generally thought to be able to provide a timing signal for harmonizing neural computations across different brain regions. Using time-frequency analyses of the dynamics of gamma-band activity in the local field potentials recorded from monkey primary visual cortex, we found identical temporal characteristics of gamma activity in both awake and anesthetized brain states, including large variability of peak frequency, brief oscillatory epochs (<100 ms on average), and stochastic statistics of the incidence and duration of oscillatory events. These findings indicate that gamma-band activity is temporally unstructured and is inherently a stochastic signal generated by neural networks. This idea was corroborated further by our neural-network simulations. Our results suggest that gamma-band activity is too random to serve as a clock signal for synchronizing neuronal responses in awake as in anesthetized monkeys. Instead, gamma-band activity is more likely to be filtered neuronal network noise. Its mean frequency changes with global state and is reduced under anesthesia.


Assuntos
Anestesia , Relógios Biológicos/fisiologia , Ondas Encefálicas/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Vigília/fisiologia , Anestesia/psicologia , Animais , Macaca fascicularis , Macaca mulatta , Masculino , Estimulação Luminosa , Processos Estocásticos , Fatores de Tempo , Percepção Visual/fisiologia
19.
J Neurophysiol ; 110(8): 1793-803, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23864383

RESUMO

Neuronal responses to prolonged stimulation attenuate over time. Here, we ask a fundamental question: is adaptation a simple process for the neural system during which sustained input is ignored, or is it actually part of a strategy for the neural system to adjust its encoding properties dynamically? After simultaneously recording the activities of a group of bullfrog's retinal ganglion cells (dimming detectors) in response to sustained dimming stimulation, we applied a combination of information analysis approaches to explore the time-dependent nature of information encoding during the adaptation. We found that at the early stage of the adaptation, the stimulus information was mainly encoded in firing rates, whereas at the late stage of the adaptation, it was more encoded in neural correlations. Such a transition in encoding properties is not a simple consequence of the attenuation of neuronal firing rates, but rather involves an active change in the neural correlation strengths, suggesting that it is a strategy adopted by the neural system for functional purposes. Our results reveal that in encoding a prolonged stimulation, the neural system may utilize concerted, but less active, firings of neurons to encode information.


Assuntos
Potenciais de Ação , Adaptação Fisiológica , Células Ganglionares da Retina/fisiologia , Animais , Modelos Neurológicos , Estimulação Luminosa , Rana catesbeiana
20.
J Neurosci ; 31(26): 9658-64, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21715631

RESUMO

Gamma-band (25-90 Hz) peaks in local field potential (LFP) power spectra are present throughout the cerebral cortex and have been related to perception, attention, memory, and disorders (e.g., schizophrenia and autism). It has been theorized that gamma oscillations provide a "clock" for precise temporal encoding and "binding" of signals about stimulus features across brain regions. For gamma to function as a clock, it must be autocoherent: phase and frequency conserved over a period of time. We computed phase and frequency trajectories of gamma-band bursts, using time-frequency analysis of LFPs recorded in macaque primary visual cortex (V1) during visual stimulation. The data were compared with simulations of random networks and clock signals in noise. Gamma-band bursts in LFP data were statistically indistinguishable from those found in filtered broadband noise. Therefore, V1 LFP data did not contain clock-like gamma-band signals. We consider possible functions for stochastic gamma-band activity, such as a synchronizing pulse signal.


Assuntos
Relógios Biológicos/fisiologia , Ondas Encefálicas/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Atenção/fisiologia , Eletrofisiologia , Potenciais Evocados Visuais , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA