Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Energy Build ; 277: 112582, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36311387

RESUMO

During the COVID-19 pandemic, strict stay-at-home orders have been implemented in many Chinese universities in virus-hit regions. While changes in electricity consumption in the residential sector caused by COVID-19 have been thoroughly analysed, there is a lack of insight into the impact of the stay-at-home order on electricity consumption in university dormitory buildings. Based on questionnaire survey results, this study adopted the statistical Kaplan-Meier survival analysis to analyse the energy-use behaviours of university students in dormitories during the COVID-19 pandemic. The electricity load profiles of the dormitory buildings before and during the implementation of the stay-at-home order were generated and compared to quantitatively analyse the influence of COVID-19 pandemic on the energy-use behaviours of university students, and the proposed load forecasting method was validated by comparing the forecasting results with monitoring data on electricity consumption. The results showed that: 1) during the implementation of the stay-at-home order, electricity consumption in the university dormitory buildings increased by 41.05%; 2) due to the increased use of illuminating lamps, laptops, and public direct drinking machines, the daily electricity consumption increased most significantly from 13:00 to 18:00, with an increase rate of 97.15%; and 3) the morning peak shifted backward and the evening peak shifted forward, demonstrating the effect of implementing the stay-at-home order on reshaping load profiles.

2.
J Environ Sci (China) ; 21(7): 933-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19862959

RESUMO

Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K(15)NO3 to the tested vegetation, nitrogen content was 77.78% for P. communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. communis Trin (9.731 mg/g) > old P. communis Trin (4.939 mg/g) > S. triqueter (0.620 mg/g) > T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.


Assuntos
Agricultura , Poluição Ambiental/análise , Nitrogênio/análise , Áreas Alagadas , China , Ecossistema , Monitoramento Ambiental , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA