Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 43(22): 5567-5570, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439902

RESUMO

The fabrication of nanoporous (NP) GaN is proposed as a generic technique to create out-of-plane index guiding for nitride microcavities. Compared to the conventional undercut technique, the proposed technique forms uniformly a low-index NP-GaN layer beneath the entire microcavity. Therefore, it supports all cavity modes (with different cavity geometries), while the undercut technique only supports the modes that reside at the circumference of a circular microcavity. As a proof of concept, GaN microdisk cavities were fabricated with the NP-GaN as the bottom low-index medium. A cold cavity with Q>2,000 was reported under continuous-wave pumping. Lasing was demonstrated with threshold optical pumping power Pth∼60 kW/cm2 for the r=10 µm microdisk and Pth∼7 kW/cm2 for the r=50 µm microdisk. A rate equation analysis was performed to estimate the spontaneous coupling factor ß∼1E-3, which was one order of magnitude higher than the previous report of a nitride microdisk laser with an InGaN quantum well active region. Therefore, NP GaN was proven to be a suitable replacement of the undercut technique for future nitride microcavities applications.

2.
Nano Lett ; 14(8): 4293-8, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24987800

RESUMO

Single crystalline nanomembranes (NMs) represent a new embodiment of semiconductors having a two-dimensional flexural character with comparable crystalline perfection and optoelectronic efficacy. In this Letter, we demonstrate the preparation of GaN NMs with a freestanding thickness between 90 to 300 nm. Large-area (>5 × 5 mm(2)) GaN NMs can be routinely obtained using a procedure of conductivity-selective electrochemical etching. GaN NM is atomically flat and possesses an optical quality similar to that from bulk GaN. A light-emitting optical heterostructure NM consisting of p-GaN/InGaN quantum wells/GaN is prepared by epitaxy, undercutting etching, and layer transfer. Bright blue light emission from this heterostructure validates the concept of NM-based optoelectronics and points to potentials in flexible applications and heterogeneous integration.

3.
Sci Rep ; 13(1): 12810, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550325

RESUMO

Intrigued by the discovery of the long lifetime in the α-Ta/Al2O3-based Transmon qubit, researchers recently found α-Ta film is a promising platform for fabricating multi-qubits with long coherence time. To meet the requirements for integrating superconducting quantum circuits, the ideal method is to grow α-Ta film on a silicon substrate compatible with industrial manufacturing. Here we report the α-Ta film sputter-grown on Si (100) with a low-loss superconducting TiNx buffer layer. The α-Ta film with a large growth temperature window has a good crystalline character. The superconducting critical transition temperature (Tc) and residual resistivity ratio (RRR) in the α-Ta film grown at 500 °C are higher than that in the α-Ta film grown at room temperature (RT). These results provide crucial experimental clues toward understanding the connection between the superconductivity and the materials' properties in the α-Ta film and open a new route for producing a high-quality α-Ta film on silicon substrate for future industrial superconducting quantum computers.

4.
Sci Rep ; 13(1): 11874, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481599

RESUMO

Tantalum and aluminum on sapphire are widely used platforms for qubits of long coherent time. As quantum chips scale up, the number of Josephson junctions on sapphire increases. Thus, both the uniformity and stability of the junctions are crucial to quantum devices, such as scalable superconducting quantum computer circuit, and quantum-limited amplifiers. By optimizing the fabrication process, especially, the conductive layer during the electron beam lithography process, Al/AlOx/Al junctions of sizes ranging from 0.0169 to 0.04 µm2 on sapphire substrates were prepared. The relative standard deviation of room temperature resistances (RN) - [Formula: see text] of these junctions is better than 1.7% on 15 mm × 15 mm chips, and better than 2.66% on 2 inch wafers, which is the highest uniformity on sapphire substrates has been reported. The junctions are robust and stable in resistances as temperature changes. The resistances increase by the ratio of 9.73% relative to RN as the temperature ramp down to 4 K, and restore their initial values in the reverse process as the temperature ramps back to room temperature. After being stored in a nitrogen cabinet for 100 days, the resistance of the junctions changed by1.16% on average. The demonstration of uniform and stable Josephson junctions in large area paves the way for the fabrication of superconducting chip of hundreds of qubits on sapphire substrates.

5.
Nat Commun ; 11(1): 3118, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561743

RESUMO

Low-cost flexible microwave circuits with compact size and light weight are highly desirable for flexible wireless communication and other miniaturized microwave systems. However, the prevalent studies on flexible microwave electronics have only focused on individual flexible microwave elements such as transistors, inductors, capacitors, and transmission lines. Thinning down supporting substrate of rigid chip-based monolithic microwave integrated circuits has been the only approach toward flexible microwave integrated circuits. Here, we report a flexible microwave integrated circuit strategy integrating membrane AlGaN/GaN high electron mobility transistor with passive impedance matching networks on cellulose nanofibril paper. The strategy enables a heterogeneously integrated and, to our knowledge, the first flexible microwave amplifier that can output 10 mW power beyond 5 GHz and can also be easily disposed of due to the use of cellulose nanofibril paper as the circuit substrate. The demonstration represents a critical step forward in realizing flexible wireless communication devices.

6.
Sci Rep ; 7(1): 6360, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743988

RESUMO

Single crystal semiconductor nanomembranes (NM) are important in various applications such as heterogeneous integration and flexible devices. This paper reports the fabrication of AlGaN/GaN NMs and NM high electron mobility transistors (HEMT). Electrochemical etching is used to slice off single-crystalline AlGaN/GaN layers while preserving their microstructural quality. A double heterostructure design with a symmetric strain profile is employed to ensure minimal residual strain in freestanding NMs after release. The mobility of the two-dimensional electron gas (2DEG), formed by the AlGaN/GaN heterostructure, is noticeably superior to previously reported values of many other NMs. AlGaN/GaN nanomembrane HEMTs are fabricated on SiO2 and flexible polymeric substrates. Excellent electrical characteristics, including a high ON/OFF ratio and transconductance, suggest that III-Nitrides nanomembranes are capable of supporting high performance applications.

7.
ACS Appl Mater Interfaces ; 9(16): 14088-14092, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28361536

RESUMO

We have demonstrated growing uniform and purely nitrogen polar semipolar (202̅1̅) GaN epilayers on 2 in. patterned sapphire substrates. The as-grown surface of (202̅1̅) GaN is composed of two stable facets: (101̅0) and (101̅1̅). A chemical mechanical polishing process was further used to planarize the surface with a final surface root-mean-square roughness of less than 1.5 nm over an area of 10 × 10 µm2. InGaN light-emitting diodes were grown on a polished (202̅1̅) GaN/sapphire template with an electroluminescence emission at around 490 nm. Our work exhibits the potential to produce high-quality nitrogen-polar semipolar GaN templates and optoelectronic devices on large-area sapphire substrates with economical feasibility.

8.
Sci Adv ; 3(7): e1602783, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695202

RESUMO

Miniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude. However, two issues arise when one continues to thin down the photoactive layers to the nanometer scale (for example, <50 nm). First, light-matter interaction becomes weak, resulting in incomplete photon absorption and low quantum efficiency. Second, it is difficult to obtain ultrathin materials with single-crystalline quality. We introduce a method to overcome these two challenges simultaneously. It uses conventional bulk semiconductor wafers, such as Si, Ge, and GaAs, to realize single-crystalline films on foreign substrates that are designed for enhanced light-matter interaction. We use a high-yield and high-throughput method to demonstrate nanometer-thin photodetectors with significantly enhanced light absorption based on nanocavity interference mechanism. These single-crystalline nanomembrane photodetectors also exhibit unique optoelectronic properties, such as the strong field effect and spectral selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA