Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432279

RESUMO

Periodate oxidation has been the widely accepted route for obtaining aldehyde group-functionalized polysaccharides but significantly influenced the various physicochemical properties due to the ring opening of the backbone of polysaccharides. The present study, for the first time, presents a novel method for the preparation of aldehyde group-functionalized polysaccharides that could retain the ring structure and the consequent rigidity of the backbone. Pectin was collected as the representative of polysaccharides and modified with cyclopropyl formaldehyde to obtain pectin aldehyde (AP), which was further crosslinked by DL-lysine (LYS) via the Schiff base reaction to prepare injectable hydrogel. The feasibility of the functionalization was proved by FT-IR and 1H NMR techniques. The obtained hydrogel showed acceptable mechanical properties, self-healing ability, syringeability, and sustained-release performance. Also, as-prepared injectable hydrogel presented great biocompatibility with a cell proliferation rate of 96 %, and the drug-loaded hydrogel exhibited clear inhibition of cancer cell proliferation. Overall, the present study showed a new method for the preparation of aldehyde group-functionalized polysaccharides, and the drug-loaded hydrogel has potential in drug release applications.


Assuntos
Hidrogéis , Pectinas , Hidrogéis/química , Aldeídos , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química
2.
Int J Biol Macromol ; 265(Pt 2): 130793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503368

RESUMO

Cellulose nanocrystals (CNCs) can form a liquid crystal film with a chiral nematic structure by evaporative-induced self-assembly (EISA). It has attracted much attention as a new class of photonic liquid crystal material because of its intrinsic, unique structural characteristics, and excellent optical properties. However, the CNCs-based photonic crystal films are generally prepared via the physical crosslinking strategy, which present water sensitivity. Here, we developed CNCs-g-PAM photonic crystal film by combining free radical polymerization and EISA. FT-IR, SEM, POM, XRD, TG-DTG, and UV-Vis techniques were employed to characterize the physicochemical properties and microstructure of the as-prepared films. The CNCs-g-PAM films showed a better thermo-stability than CNCs-based film. Also, the mechanical properties were significantly improved, viz., the elongation at break was 9.4 %, and tensile strength reached 18.5 Mpa, which was a much better enhancement than CNCs-based film. More importantly, the CNCs-g-PAM films can resist water dissolution for more than 24 h, which was impossible for the CNCs-based film. The present study provided a promising strategy to prepare CNCs-based photonic crystal film with high flexibility, water resistance, and optical properties for applications such as decoration, light management, and anti-counterfeiting.


Assuntos
Nanopartículas , Água , Água/química , Polimerização , Celulose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química
3.
Int J Biol Macromol ; 277(Pt 2): 134155, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098462

RESUMO

N-doped TiO2/carbon composites (N-TiPC) have shown excellent photodegradation performances to the organic contaminants but are limited by the multistage preparation (i.e., preparation of porous carbon, preparation of N-doped TiO2, and loading of N-doped TiO2 on porous carbon). Here, we develop a handy way by combining the Pickering emulsion-gel template route and chelation reaction of polysaccharides. The N-TiPC is obtained by calcinating pectin/Dl-serine hydrazide hydrochloride (SHH)-Ti4+ chelate and is further described by modern characterization techniques. The results show that the N atom is successfully doped into the TiO2 lattice, and the bandgap value of N-TiPC is reduced to 2.3 eV. Moreover, the particle size of N-TiPC remains about 10 nm. The configurations of the composites are simulated using DFT calculation. The photocatalytic experiments show that N-TiPC has a high removal efficiency for methylene blue (MB) and oxytetracycline hydrochloride (OTC-HCL). The removal ratios of MB (20 mg/L, 50 mL) and OTC-HCL (30 mg/L, 50 mL) are 99.41 % and 78.29 %, respectively. The cyclic experiments show that the photocatalyst has good stability. Overall, this study provides a handy way to form N-TiPC with enhanced photodegradation performances. It can also be promoted to other macromolecules such as cellulose and its derivatives, sodium alginate, chitosan, lignin, etc.


Assuntos
Carbono , Pectinas , Serina , Titânio , Pectinas/química , Titânio/química , Carbono/química , Serina/química , Nitrogênio/química , Catálise , Fotólise , Porosidade , Azul de Metileno/química
4.
Int J Biol Macromol ; 243: 125200, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271270

RESUMO

A one-pot route for the preparation of TiO2@carbon nanocomposite from Ti4+/polysaccharide coordination complex has been developed and shown advantages in operation, cost, environment, etc. However, the photodegradation rate of methylene blue (MB) needs to be improved. N-doping has been proven as an efficient means to enhance photodegradation performance. Thus, the present study upgraded the TiO2@carbon nanocomposite to N-doped TiO2@carbon nanocomposite (N-TiO2@C) from Ti4+-dopamine/sodium alginate multicomponent complex. The composites were characterized by FT-IR, XRD, XPS, UV-vis DRS, TG-DTA, and SEM-EDS. The obtained TiO2 was a typical rutile phase, and the carboxyl groups existed on N-TiO2@C. The photocatalyst consequently showed high removal efficiency of MB. The cycling experiment additionally indicated the high stability of N-TiO2@C. The present work provided a novel route for preparing N-TiO2@C. Moreover, it can be extended to prepare N-doped polyvalent metal oxides@carbon composites from all water-soluble polysaccharides such as cellulose derivatives, starch, and guar gum.


Assuntos
Carbono , Nanocompostos , Azul de Metileno , Titânio , Dopamina , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 36(12): 1684-1688, 2016 Dec 20.
Artigo em Zh | MEDLINE | ID: mdl-27998865

RESUMO

OBJECTIVE: To investigate the presence of interactions between DNAJB13 and HK1. METHODS: The open reading frame of Dnajb13 gene was amplified from mouse testis cDNA by PCR. The PCR products were then inserted into pGEX-4T-1 vector after double digestion and identified by sequencing. The recombinant plasmids were transformated into competent DH5a cells, and the fusion protein was expressed with IPTG induction. SDS-PAGE Coomassie brilliant blue staining and Western blot analysis were used to detect the fusion protein expression. The protein precipitated by GST-DNAJB13 in GST pull down assay was detected by Western blotting. RESULTS: The recombinant plasmid pGEX-4T-1-Dnajb13 was successfully constructed and verified. E.coli transformed with the recombinant plasmid expressed abundant fusion protein. GST pull down assay showed interactions between DNAJB13 and HK1. CONCLUSION: DNAJB13 interacts with HK1 in mouse testis and probably participates in spermatogenesis and the regulation of sperm motility.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Hexoquinase/fisiologia , Plasmídeos , Proteínas Recombinantes , Espermatogênese/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Western Blotting , DNA Complementar , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Camundongos , Chaperonas Moleculares , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão , Motilidade dos Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA