Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(6): e2305700, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797186

RESUMO

It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.

2.
Small ; 20(8): e2307863, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822157

RESUMO

The low energy efficiency and limited cycling life of rechargeable Zn-air batteries (ZABs) arising from the sluggish oxygen reduction/evolution reactions (ORR/OERs) severely hinder their commercial deployment. Herein, a zeolitic imidazolate framework (ZIF)-derived strategy associated with subsequent thermal fixing treatment is proposed to fabricate dual-atom CoFe─N─C nanorods (Co1 Fe1 ─N─C NRs) containing atomically dispersed bimetallic Co/Fe sites, which can promote the energy efficiency and cyclability of ZABs simultaneously by introducing the low-potential oxidation redox reactions. Compared to the mono-metallic nanorods, Co1 Fe1 ─N─C NRs exhibit remarkable ORR performance including a positive half-wave potential of 0.933 V versus reversible hydrogen electrode (RHE) in alkaline electrolyte. Surprisingly, after introducing the potassium iodide (KI) additive, the oxidation overpotential of Co1 Fe1 ─N─C NRs to reach 10 mA cm-2 can be significantly reduced by 395 mV compared to the conventional destructive OER. Theoretical calculations show that the markedly decreased overpotential of iodide oxidation can be ascribed to the synergistic effects of neighboring Co─Fe diatomic sites as the unique adsorption sites. Overall, aqueous ZABs assembled with Co1 Fe1 ─N─C NRs and KI as the air-cathode catalyst and electrolyte additive, respectively, can deliver a low charging voltage of 1.76 V and ultralong cycling stability of over 230 h with a high energy efficiency of ≈68%.

3.
Small ; : e2403056, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726792

RESUMO

Energy conversion and transfer of enzyme-catalyzed reactions at molecular level are an interesting and challenging scientific topic that helps understanding biological processes in nature. In this study, it is demonstrated that enzyme-catalyzed reactions can enhance diffusion of surrounding molecules and thus accelerate cargo transport within 1D micro/nanochannels. Specifically, urease is immobilized on the inner walls of silica micro/nano-tubes to construct bio-catalytically active micro/nanochannels. The catalytic reaction inside the channels drives a variety of cargoes, including small dye molecules, polymers, and rigid nanoparticles (e.g., quantum dots, QDs), to pass through these micro/nanochannels much faster than they will by free diffusion. The enhanced diffusion of molecular species inside the channels is validated by direct observation of the Brownian motion of tracer particles, and further confirmed by significantly enhanced Raman intensity of reporter molecules. Finite element and Brownian dynamics simulations provide a theoretical understanding of these experimental observations. Furthermore, the effect of the channels' size on the diffusion enhancement is examined. The acceleration effect of the cargo transport through these enzymatically active micro/nanochannels can be turned on or off via chemical activators or inhibitors. This study provides valuable insights on the design of biomimetic channels capable of controlled and efficient transmembrane transport.

4.
Small ; 20(7): e2305658, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798674

RESUMO

Defect engineering is promising to tailor the physical properties of 2D semiconductors for function-oriented electronics and optoelectronics. Compared with the extensively studied 2D binary materials, the origin of defects and their influence on physical properties of 2D ternary semiconductors are not clarified. Here, the effect of defects on the electronic structure and optical properties of few-layer hexagonal Znln2 S4 is thoroughly studied via versatile spectroscopic tools in combination with theoretical calculations. It is demonstrated that the Zn-In antistructural defects induce the formation of a series of donor and acceptor energy levels and sulfur vacancies induce donor energy levels, leading to rich recombination paths for defect emission and extrinsic absorption. Impressively, the emission of donor-acceptor pair in Znln2 S4 can be significantly tailored by electrostatic gating due to efficient tunability of Fermi level (Ef ). Furthermore, the layer-dependent dipole orientation of defect emission in Znln2 S4 is directly revealed by back focal plane imagining, where it presents obviously in-plane dipole orientation within a dozen-layer thickness of Znln2 S4 . These unique features of defects in Znln2 S4 including extrinsic absorption, rich recombination paths, gate tunability, and in-plane dipole orientation are definitely a benefit to the advanced orientation-functional optoelectronic applications.

5.
Cell Mol Life Sci ; 80(3): 61, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763212

RESUMO

BRAF mutations have been found in gliomas which exhibit abnormal electrophysiological activities, implying their potential links with the ion channel functions. In this study, we identified the Drosophila potassium channel, Slowpoke (Slo), the ortholog of human KCNMA1, as a critical factor involved in dRafGOF glioma progression. Slo was upregulated in dRafGOF glioma. Knockdown of slo led to decreases in dRafGOF levels, glioma cell proliferation, and tumor-related phenotypes. Overexpression of slo in glial cells elevated dRaf expression and promoted cell proliferation. Similar mutual regulations of p-BRAF and KCNMA1 levels were then recapitulated in human glioma cells with the BRAF mutation. Elevated p-BRAF and KCNMA1 were also observed in HEK293T cells upon the treatment of 20 mM KCl, which causes membrane depolarization. Knockdown KCNMA1 in these cells led to a further decrease in cell viability. Based on these results, we conclude that the levels of p-BRAF and KCNMA1 are co-dependent and mutually regulated. We propose that, in depolarized glioma cells with BRAF mutations, high KCNMA1 levels act to repolarize membrane potential and facilitate cell growth. Our study provides a new strategy to antagonize the progression of gliomas as induced by BRAF mutations.


Assuntos
Glioma , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Proteínas Proto-Oncogênicas B-raf , Animais , Humanos , Drosophila/metabolismo , Glioma/genética , Células HEK293 , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
6.
Small ; 19(21): e2207991, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843282

RESUMO

Single-atom Fe-N-C (Fe1 -N-C) materials represent the benchmarked electrocatalysts for oxygen reduction reaction (ORR). However, single Fe atoms in the carbon skeletons cannot be fully utilized due to the mass transfer limitation, severely restricting their intrinsic ORR properties. Herein, a self-sacrificing template strategy is developed to fabricate ultrathin nanosheets assembled Fe1 -N-C hollow microspheres (denoted as Fe1 /N-HCMs) by rational carbonization of Fe3+ chelating polydopamine coated melamine cyanuric acid complex. The shell of Fe1 /N-HCMs is constructed by ultrathin nanosheets with thickness of only 2 nm, which is supposed to be an ideal platform to isolate and fully expose single metal atoms. Benefiting from unique hierarchical hollow architecture with highly open porous structure, 2 nm-thick ultrathin nanosheet subunits and abundant Fe-N4 O1 active sites revealed by X-ray absorption fine structure analysis, the Fe1 /N-HCMs exhibit high ORR performance with a positive half-wave potential of 0.88 V versus the reversible hydrogen electrode and robust stability. When served as air-cathode catalysts with ultralow loading mass of 0.25 mg cm-2 , Fe1 /N-HCMs based Zn-air batteries present a maximum power density of 187 mW cm-2 and discharge specific capacity of 806 mA h gZn -1 in primary Zn-air batteries, all exceeding those of commercial Pt/C.

7.
Small ; 19(43): e2301798, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357158

RESUMO

Electric double layer (EDL) devices based on 2D materials have made great achievements for versatile electronic and opto-electronic applications; however, the ion dynamics and electric field distribution of the EDL at the electrolyte/2D material interface and their influence on the physical properties of 2D materials have not been clearly clarified. In this work, by using Kelvin probe force microscope and steady/transient optical techniques, the character of the EDL and its influence on the optical properties of monolayer transition metal dichalcogenides (TMDs) are probed. The potential drop, unscreened EDL potential distribution, and accumulated carriers at the electrolyte/TMD interface are revealed, which can be explained by nonlinear Thomas-Fermi theory. By monitoring the potential distribution along the channel, the evolution of the electric field-induced lateral junction in the TMD EDL transistor is accessed, giving rise to the better exploration of EDL device physics. More importantly, EDL gate-dependent carrier recombination and exciton-exciton annihilation in monolayer TMDs on lithium-ion solid state electrolyte (Li2 Al2 SiP2 TiO13 ) are evaluated for the first time, benefiting from the understanding of the interaction between ions, carriers, and excitons. The work will deepen the understanding of the EDL for the exploitation of functional device applications.

8.
Small ; 19(45): e2303654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415518

RESUMO

Laser-driven phase transition of 2D transition metal dichalcogenides has attracted much attention due to its high flexibility and rapidity. However, there are some limitations during the laser irradiation process, especially the unsatisfied surface ablation, the inability of nanoscale phase patterning, and the unexploited physical properties of new phase. In this work, the well-controlled femtosecond (fs) laser-driven transformation from the metallic 2M-WS2 to the semiconducting 2H-WS2 is reported, which is confirmed to be a single-crystal to single-crystal transition without layer thinning or obvious ablation. Moreover, a highly ordered 2H/2M nano-periodic phase transition with a resolution of ≈435 nm is achieved, breaking through the existing size bottleneck of laser-driven phase transition, which is attributed to the selective deposition of plasmon energy induced by fs laser. It is also demonstrated that the achieved 2H-WS2 after laser irradiation contains rich sulfur vacancies, which exhibits highly competitive ammonia gas sensing performance, with a detection limit below 0.1 ppm and a fast response/recovery time of 43/67 s at room temperature. This study provides a new strategy for the preparation of the phase-selective transition homojunction and high-performance applications in electronics.

9.
Small ; 18(34): e2202476, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35905493

RESUMO

Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of Zn-air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen-doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl-template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2  = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X-ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co-N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn-air battery, which can deliver a large power density of 220 mW cm-2 and maintain robust cycling stability over 530 cycles.

10.
Small ; 18(5): e2104401, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34825486

RESUMO

2D van der Waals (vdW) semiconductors hold great potentials for more-than-Moore field-effect transistors (FETs), and the efficient utilization of their theoretical performance requires compatible high-k dielectrics to guarantee the high gate coupling efficiency. The deposition of traditional high-k dielectric oxide films on 2D materials usually generates interface concerns, thereby causing the carrier scattering and degeneration of device performance. Here, utilizing a space-confined epitaxy growth approach, the authors successfully obtained air-stable ultrathin indium phosphorus sulfide (In2 P3 S9 ) nanosheets, the thickness of which can be scaled down to monolayer limit (≈0.69 nm) due to its layered structure. 2D In2 P3 S9 exhibits excellent insulating properties, with a high dielectric constant (≈24) and large breakdown voltage (≈8.1 MV cm-1 ) at room temperature. Serving as gate insulator, ultrathin In2 P3 S9 nanosheet can be integrated into MoS2 FETs with high-quality dielectric/semiconductor interface, thus providing a competitive electrical performance of device with subthreshold swings (SS) down to 88 mV dec-1 and a high ON/OFF ratio of 105 . This study proves an important strategy to prepare 2D vdW high-k dielectrics, and greatly facilitates the ongoing research of 2D materials for functional electronics.

11.
Small ; 18(49): e2205033, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285776

RESUMO

Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe1 -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1 -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK ) of Fe1 -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm-2 , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe1 -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm-2 .

12.
Environ Res ; 209: 112894, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35149112

RESUMO

Chemical household products are a common cause of accidents in the domestic sphere. Despite such products being associated with certain risks in the event of swallowing or contact with the skin or eyes, they are used in nearly every household worldwide for hygiene purposes. In most European countries, chemical household products feature warnings of the Globally Harmonized System (GHS) as well as other warnings. In this eye-tracking study (N = 147), which was conducted in a virtual environment, we examined (i) whether consumers use such warnings when choosing a laundry detergent, (ii) whether they consider information irrelevant to risk assessment and (iii) whether they make use of this information for their final product choice. For this, the participants were split randomly into three experimental groups (a risk priming group, an effectiveness priming group, and a control group) that each received different tasks while purchasing a laundry detergent. The results indicate that the warnings found on laundry detergents are effective when they are used, although the majority of consumers do not look at the warnings. Therefore, we suggest that the alternative placement of warnings or the use of simplified warnings should be considered to improve consumers' awareness of potential risks.


Assuntos
Detergentes , Produtos Domésticos , Comportamento do Consumidor , Humanos , Medição de Risco , Fatores de Risco
13.
Nano Lett ; 21(19): 8043-8050, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34550704

RESUMO

Two-dimensional (2D) trigonal selenium (t-Se) has become a new member in 2D semiconducting nanomaterial families. It is composed of well-aligned one-dimensional Se atomic chains bonded via van der Waals (vdW) interaction. The contribution of this unique anisotropic nanostructure to its mechanical properties has not been explored. Here, for the first time, we combine experimental and theoretical analyses to study the anisotropic mechanical properties of individual 2D t-Se nanosheets. It was found that its fracture strength and Young's modulus parallel to the atomic chain direction are much higher than along the transverse direction, which was attributed to the weak vdW interaction between Se atomic chains as compared to the covalent bonding within individual chains. Additionally, two distinctive fracture modes along two orthogonal loading directions were identified. This work provides important insights into the understanding of anisotropic mechanical behaviors of 2D semiconducting t-Se and opens new possibilities for future applications.


Assuntos
Nanoestruturas , Selênio , Anisotropia , Módulo de Elasticidade , Humanos
14.
Nano Lett ; 21(11): 4700-4707, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34018750

RESUMO

Here, we report a novel topotactic method to grow 2D free-standing perovskite using KNbO3 (KN) as a model system. Perovskite KN with monoclinic phase, distorted by as large as ∼6 degrees compared with orthorhombic KN, is obtained from 2D KNbO2 after oxygen-assisted annealing at relatively low temperature (530 °C). Piezoresponse force microscopy (PFM) measurements confirm that the 2D KN sheets show strong spontaneous polarization (Ps) along [101̅]pc direction and a weak in-plane polarization, which is consistent with theoretical predictions. Thickness-dependent stripe domains, with increased surface displacement and PFM phase changes, are observed along the monoclinic tilt direction, indicating the preserved strain in KN induces the variation of nanoscale ferroelectric properties. 2D perovskite KN with low symmetry phase stable at room temperature will provide new opportunities in the exploration of nanoscale information storage devices and better understanding of ferroelectric/ferroelastic phenomena in 2D perovskite oxides.

15.
Angew Chem Int Ed Engl ; 61(21): e202202519, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35266633

RESUMO

We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu -1 , eight-fold higher than that of commercial RuO2 (176 A gRu -1 ). Theoretical calculations demonstrate that the strong catalyst-support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2 -WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm-2 . The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.

16.
Anal Chem ; 93(16): 6463-6471, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33852265

RESUMO

Aminopeptidase N (APN) is capable of cleaving N-terminal amino acids from peptides with alanine in the N-terminal position and plays a key role in the growth, migration, and metastasis of cancer. However, reliable in situ information is hard to be obtained with the current APN-responsive molecular probes because the released fluorophores are cytoplasmic soluble and thus rapidly depart from the enzymatic reaction sites and spread out all over the cytoplasm. Here, we report a de novo precipitated fluorophore, HBPQ, which is completely insoluble in water and shows strong yellow solid emission when excited with a 405 nm laser. Owing to the controllable solid fluorescence of HBPQ by the protection-deprotection of phenolic hydroxyl, we further utilized HBPQ to design an APN-responsive fluorogenic probe (HBPQ-A) for the imaging of intracellular APN. Importantly, HBPQ-A can not only perform in situ imaging of APN in different organelles (e.g., lysosomes, mitochondria, endoplasmic reticula, and so forth) but also display a stable and indiffusible fluorescent signal for reliable mapping of the distribution of APN in living cells. In addition, through real-time imaging of APN in 4T1 tumors, we found that the fluorescent signal with high fidelity generated by HBPQ-A could remain constant even after 12 h, which further confirmed its diffusion-resistant ability and long-term reliable imaging ability. We believe that the precipitated fluorophore may have great potential for long-term in situ imaging.


Assuntos
Antígenos CD13 , Corantes Fluorescentes , Neoplasias , Fluorescência , Humanos , Sondas Moleculares , Neoplasias/diagnóstico por imagem
17.
Small ; 17(17): e2007739, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33739614

RESUMO

2D organic crystals exhibit efficient charge transport and field-effect characteristics, making them promising candidates for high-performance nanoelectronics. However, the strong Fermi level pinning (FLP) effect and large Schottky barrier between organic semiconductors and metals largely limit device performance. Herein, by carrying out temperature-dependent transport and Kelvin probe force microscopy measurements, it is demonstrated that the introducing of 2D metallic 1T-TaSe2 with matched band-alignment as electrodes for F16 CuPc nanoflake filed-effect transistors leads to enhanced field-effect characteristics, especially lowered Schottky barrier height and contact resistance at the contact and highly efficient charge transport within the channel, which are attributed to the significantly suppressed FLP effect and appropriate band alignment at the nonbonding van der Waals (vdW) hetero-interface. Moreover, by taking advantage of the improved contact behavior with 1T-TaSe2 contact, the optoelectronic performance of F16 CuPc nanoflake-based phototransistor is drastically improved, with a maximum photoresponsivity of 387 A W-1 and detectivity of 3.7 × 1014 Jones at quite a low Vds of 1 V, which is more competitive than those of the reported organic photodetectors and phototransistors. The work provides an avenue to improve the electrical and optoelectronic properties of 2D organic devices by introducing 2D metals with appropriate work function for vdW contacts.

18.
Angew Chem Int Ed Engl ; 60(1): 259-267, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32964599

RESUMO

To ensure sustainable hydrogen production by water electrolysis, robust, earth-abundant, and high-efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase-junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c-NiP2 /m-NiP2 ) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm-2 ) for NiP2 -650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c-NiP2 and m-NiP2 , respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.

19.
Nano Lett ; 19(8): 5410-5416, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31343178

RESUMO

Piezoelectric two-dimensional (2D) van der Waals (vdWs) materials are highly desirable for applications in miniaturized and flexible/wearable devices. However, the reverse-polarization between adjacent layers in current 2D layered materials results in decreasing their in-plane piezoelectric coefficients with layer number, which limits their practical applications. Here, we report a class of 2D layered materials with an identical orientation of in-plane polarization. Their piezoelectric coefficients (e22) increase with layer number, thereby allowing for the fabrication of flexible piezotronic devices with large piezoelectric responsivity and excellent mechanical durability. The piezoelectric outputs can reach up to 0.363 V for a 7-layer α-In2Se3 device, with a current responsivity of 598.1 pA for 1% strain, which is 1 order of magnitude higher than the values of the reported 2D piezoelectrics. The self-powered piezoelectric sensors made of these newly developed 2D layered materials have been successfully used for real-time health monitoring, proving their suitability for the fabrication of flexible piezotronic devices due to their large piezoelectric responses and excellent mechanical durability.

20.
Small ; 15(41): e1903596, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441213

RESUMO

Elemental tantalum is a well-known biomedical metal in clinics due to its extremely high biocompatibility, which is superior to that of other biomedical metallic materials. Hence, it is of significance to expand the scope of biomedical applications of tantalum. Herein, it is reported that tantalum nanoparticles (Ta NPs), upon surface modification with polyethylene glycol (PEG) molecules via a silane-coupling approach, are employed as a metallic photoacoustic (PA) contrast agent for multiwavelength imaging of tumors. By virtue of the broad optical absorbance from the visible to near-infrared region and high photothermal conversion efficiency (27.9%), PEGylated Ta NPs depict high multiwavelength contrast capability for enhancing PA imaging to satisfy the various demands (penetration depth, background noise, etc.) of clinical diagnosis as needed. Particularly, the PA intensity of the tumor region postinjection is greatly increased by 4.87, 7.47, and 6.87-fold than that of preinjection under 680, 808, and 970 nm laser irradiation, respectively. In addition, Ta NPs with negligible cytotoxicity are capable of eliminating undesirable reactive oxygen species, ensuring the safety for biomedical applications. This work introduces a silane-coupling strategy for the surface engineering of Ta NPs, and highlights the potential of Ta NPs as a biocompatible metallic contrast agent for multiwavelength photoacoustic image.


Assuntos
Meios de Contraste/química , Nanopartículas/química , Neoplasias/diagnóstico , Técnicas Fotoacústicas , Polietilenoglicóis/química , Tantálio/química , Animais , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Injeções Intravenosas , Camundongos , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA