Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 965: 176307, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160930

RESUMO

OBJECTIVE: Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). Trimethylamine N-oxide (TMAO) has emerged as a crucial risk factor in cardiovascular diseases, inducing vascular inflammation and calcification. We aimed to evaluate the effect of TMAO on the formation of AAA. APPROACH AND RESULTS: Here, we showed that TMAO was elevated in plasma from AAA patients compared with nonaneurysmal subjects by liquid chromatography‒mass spectrometry (LC‒MS) detection. Functional studies revealed that increased TMAO induced by feeding a choline-supplemented diet promoted Ang II-induced AAA formation. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analyses revealed that TMAO induced macrophage infiltration and inflammatory factor release. Conversely, inhibition of TMAO by supplementation with DMB suppressed AAA formation and the inflammatory response. Molecular studies revealed that TMAO regulated VSMC phenotypic switching. Flow cytometry analyses showed that TMAO induces macrophage M1-type polarization. Furthermore, pharmacological intervention experiments suggested that the nuclear factor-κB (NF-κB) signaling pathway was critical for TMAO to trigger AAA formation. CONCLUSIONS: TMAO promotes AAA formation by inducing vascular inflammation and VSMC phenotypic switching through activation of the NF-κB signaling pathway. Thus, TMAO is a prospective therapeutic AAA target.


Assuntos
Aneurisma da Aorta Abdominal , Metilaminas , NF-kappa B , Humanos , Animais , NF-kappa B/metabolismo , Músculo Liso Vascular , Aneurisma da Aorta Abdominal/patologia , Inflamação/metabolismo , Miócitos de Músculo Liso , Angiotensina II/farmacologia , Modelos Animais de Doenças
2.
Micromachines (Basel) ; 13(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35888851

RESUMO

The temperature of advanced components in aviation and aerospace fields is difficult to obtain timely. In this study, we aimed to investigate microwave backscattering technology combined with the theory of substrate integrated waveguide and resonant cavity to design a wireless passive temperature sensor and explore its potential in this field. We employed silicon carbide and aluminum ceramic as the substrate to make sensors. The interrogation antenna was designed to test the sensor, which could completely cover the working frequency of the sensor and had good radiation characteristics. Based on the test results, the silicon carbide sensor was capable of bearing a temperature limit of about 1000 °C compared to the alumina sensor. From 25 °C to 500 °C, its sensitivity was 73.68 kHz/°C. Furthermore, the sensitivity was 440 kHz/°C in the range of 501 °C to 1000 °C. Moreover, we observed the surface of this sensor by using the scanning electron microscope, and the results showed that the damage to the sensor surface film structure caused by long-term high temperature is the major reason for the failure of the sensor. In conclusion, the performance of the silicon carbide sensor is superior to the alumina sensor.

3.
Micromachines (Basel) ; 12(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921691

RESUMO

A new type of wireless passive, high sensitivity, high temperature sensor was designed to meet the real-time temperature test in the harsh aero-engine environment. The sensor consists of a complementary split ring resonator and a substrate integrated circular waveguide (CSRR-SICW) structure and is based on high temperature resistant Si3N4 ceramic as the substrate material. Temperature is measured by real-time monitoring of the resonant frequency of the sensor. In addition, the ambient temperature affects the dielectric constant of the dielectric substrate, and the resonant frequency of the sensor is determined by the dielectric constant, so the function relationship between temperature and resonant frequency can be established. The experimental results show that the resonant frequency of the sensor decreases from 11.3392 GHz to 11.0648 GHz in the range of 50-1000 °C. The sensitivity is 123 kHz/°C and 417 kHz/°C at 50-450 °C and 450-1000 °C, respectively, and the average test sensitivity is 289 kHz/°C. Compared with previously reported high temperature sensors, the average test sensitivity is approximately doubled, and the test sensitivity at 450-1000 °C is approximately three times higher. Therefore, the proposed high sensitivity sensor has promising prospects for high temperature measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA