Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carbohydr Polym ; 326: 121641, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142081

RESUMO

Herein, we propose a carbon/TiO2/Co3O4 (CTC) composite carbon aerogel with a 3D porous conductive network structure derived from sodium carboxymethylcellulose (CMC)/Mxene (Ti3C2Tx)/zeolite imidazolium framework-67 (ZIF-67). Among them, CMC is used as the carbon skeleton, which can reduce the powdering caused by volume change and improve the cycle stability. Ti3C2Tx acts as the conductive agent and dispersant for ZIF-67, exposing more reactive sites while constructing fast conductive channels to enhance electrochemical performance. The microstructure of the CTC carbon aerogel is modulated by controlling the mass ratio of Ti3C2Tx to ZIF-67, and the carbon aerogel with a mass ratio of 2:3 (CTC-2:3) is experimentally demonstrated to have the best electrochemical performance. The CTC-2:3 electrode exhibits a high specific capacitance of 481.7 F g-1 at 1 A g-1 and possesses a rate performance of 78.9 % at 10 A g-1. The assembled asymmetric supercapacitor (ASC, CTC-2:3//Ti3C2Tx) delivers an energy density of 48.4 Wh kg-1 at a power density of 699.8 W kg-1. Moreover, the ASC device maintains 85.3 % initial capacitance and 99.1 % coulombic efficiency after 10,000 GCD cycles, indicating good cycling stability. This facile design pathway provides a new insight for the development of high-performance electrode materials.

2.
Int J Biol Macromol ; 261(Pt 1): 129759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281523

RESUMO

Stretchable and tough hydrogels have been extensively used in tissue engineering scaffolds and flexible electronics. However, it is still a significant challenge to prepare hydrogels with both tensile strength and toughness by utilizing xylan, which is abundant in nature. Herein, we present a novel hydrogel of carboxymethyl xylan(CMX) graft gelatin (G) and doped with conductive hydroxyl carbon nanotubes (OCNT). CMX and G are combined through amide bonding as well as intermolecular hydrogen bonding to form a semi-interpenetrating hydrogel network. The hydrogel was further subjected to salting-out treatment, which induced the aggregation of the CMX-g-G molecular chain and the formation of chain bundles to toughen the hydrogel, the tensile strain, tensile stress, and toughness of CMX-g-G hydrogels were 1.547 MPa, 324 %, and 2.31 MJ m-3, respectively. In addition, OCNT was used as a conductive filler to impart electrical conductivity and further improve the mechanical properties of CMX-g-G/OCNT hydrogel, and a tensile strength of 1.62 MPa was obtained. Thus, the synthesized CMX-g-G/OCNT hydrogel can be used as a reliable and sensitive strain sensor for monitoring human activity. This study opens up new horizons for the preparation of xylan-based high-performance hydrogels.


Assuntos
Hidrogéis , Nanotubos de Carbono , Humanos , Gelatina , Xilanos , Amidas , Condutividade Elétrica , Cloreto de Sódio
3.
J Colloid Interface Sci ; 670: 163-173, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761569

RESUMO

Robust, conductive and flexible electrode materials have been the focus of attention in portable, wearable electronics. However, it is still a significant challenge to achieve synergistic development of multiple properties simultaneously. Herein, we propose a combination of microscale design and nanostructures strategy to prepare MXene/cellulose nanofiber-poly (3,4-ethylenedioxythiphoenes):polystyrene sulfonate (Ti3C2Tx/CNF-PEDOT:PSS, TC-P) hybrid film by a simple in-situ polymerization and vacuum filtration process. CNF serves as the supporting skeleton of PEDOT:PSS, effectively mitigating its self-aggregation and structural deformation due to the expansion/contraction of the polymer network. And the CNF-PEDOT:PSS composite is capable to open up the interlayer space of Ti3C2Tx, which reduces the self-stacking of Ti3C2Tx nanosheets. The strong interactions among the three components enable the hybrid film electrode to possess both flexibility and high electrochemical properties. As a result, the film electrode exhibits a remarkable tensile strength of 77.4 MPa and an excellent conductivity of 162.5 S cm-1, as well as an outstanding areal specific capacitance of 896 mF cm-2 at 4 mA cm-2. Moreover, the assembled symmetric supercapacitor (SSC) device displays a large areal energy density of 62 µWh cm-2 at a power density of 800 µW cm-2 and demonstrates a long cycle life with 85.1 % capacitance retention after 10,000 GCD cycles. This study provides an effective strategy to balance mechanical flexibility and electrochemical properties, providing an inspiration to prepare flexible electrodes that are widely applied in a new generation of portable, wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA