RESUMO
The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin-induced diabetic rats, glyoxal-treated R28 cells and hypoxia-treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba-1, TSPO, NF-κB, Nrf2 and inflammation-related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal-treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia-treated microglia, which was largely dampened by FKN. The NF-κB and Nrf2 expressions and intracellular ROS were up-regulated in hypoxia-treated microglia compared with that in normoxia control, and FKN significantly inhibited NF-κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF-κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation-related cytokines and ROS, and protect the retina from diabetes insult.
Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacologia , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Microglia , Doenças Neuroinflamatórias , RatosRESUMO
OBJECTIVE: To evaluate the value of local treatment in stage IVB cervical cancer (CC). METHODS: Patients diagnosed with stage IVB CC between 2010 and 2015 were included using the data from the Surveillance, Epidemiology, and End Results program. Propensity score matching (PSM) was used to balance the clinicopathological variables of patients. Multivariate Cox regression analyses were performed to analyze the risk factors associated with cause-specific survival (CSS). RESULTS: We identified 960 patients in this study, all patients had received chemotherapy. Of these patients, 818 patients were treated with local treatment (85.2%), including 724 (88.5%) and 94 (11.5%) patients receiving radiotherapy (RT) alone and surgery ± RT, respectively. Local treatment was the independent prognostic factor associated with better CSS. Before PSM, patients who received RT (hazard ratio [HR] 0.633, 95% confidence interval [CI] 0.517-0.775, P < 0.001) or surgery (HR 0.391, 95% CI 0.277-0.552, P < 0.001) were independently associated with a better CSS compared to those with no local treatment. The 3-years CSS rate was 14.4%, 32.4%, and 54.8% in no local treatment, RT alone, and surgery groups, respectively (P < 0.001). Similar results were found after PSM. Patients receiving RT (HR 0.643, 95% CI 0.436-0.947, P = 0.025) and surgery (HR 0.146, 95% CI 0.052-0.410, P < 0.001) had better CSS compared to patients with no local treatment after PSM. While similar CSS was shown between RT alone cohort and the surgery cohort (HR 0.756, 95% CI 0.454-1.260, P = 0.284). CONCLUSIONS: The addition of local surgery or RT to chemotherapy appears to confer improved survival outcomes in patients with stage IVB CC.
Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Estadiamento de Neoplasias , Pontuação de Propensão , Modelos de Riscos Proporcionais , Programa de SEER , Neoplasias do Colo do Útero/patologiaRESUMO
AIMS/HYPOTHESIS: Microglial activation in diabetic retinopathy and the protective effect of erythropoietin (EPO) have been extensively studied. However, the regulation of microglia in the retina and its relationship to inner blood-retinal barrier (iBRB) maintenance have not been fully characterised. In this study, we investigated the role of microglia in iBRB breakdown in diabetic retinopathy and the protective effects of EPO in this context. METHODS: Male Sprague Dawley rats were injected intraperitoneally with streptozotocin (STZ) to establish the experimental model of diabetes. At 2 h after STZ injection, the right and left eyes were injected intravitreally with EPO (16 mU/eye, 2 µl) and an equivalent volume of normal saline (NaCl 154 mmol/l), respectively. The rats were killed at 2 or 8 weeks after diabetes onset. Microglia activation was detected by ionised calcium binding adaptor molecule (IBA)-1 immunolabelling. Leakage of the iBRB was evaluated by albumin staining and FITC-dextran permeability assay. BV2 cells and primary rat microglia under hypoxic conditions were used to model microglial activation in diabetic retinopathy. Phagocytosis was examined by confocal microscopy in flat-mounted retina preparations and in microglia and endothelial cell cocultures. Protein levels of IBA-1, CD11b, complement component 1r (C1r), and Src/Akt/cofilin signalling pathway components were assessed by western blotting. RESULTS: In diabetic rat retinas, phagocytosis of endothelial cells by activated microglia was observed at 8 weeks, resulting in an increased number of acellular capillaries (increased by 426.5%) and albumin leakage. Under hypoxic conditions, activated microglia transmigrated to the opposite membrane of the transwell, where they disrupted the endothelial cell monolayer by engulfing endothelial cells. The activation and phagocytic activity of microglia was blocked by intravitreal injection of EPO. In vitro, IBA-1, CD11b and C1r protein levels were increased by 50.9%, 170.0% and 135.5%, respectively, by hypoxia, whereas the phosphorylated proteins of Src/Akt/cofilin signalling pathway components were decreased by 74.2%, 47.8% and 39.7%, respectively, compared with the control; EPO treatment abrogated these changes. CONCLUSIONS/INTERPRETATION: In experimental diabetic retinopathy, activated microglia penetrate the basement membrane of the iBRB and engulf endothelial cells, leading to iBRB breakdown. EPO exerts a protective effect that preserves iBRB integrity via activation of Src/Akt/cofilin signalling in microglia, as demonstrated in vitro. These data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of EPO for the treatment of diabetic retinopathy. Graphical abstract.
Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/fisiopatologia , Eritropoetina/administração & dosagem , Microglia/fisiologia , Fagocitose/efeitos dos fármacos , Fatores de Despolimerização de Actina/metabolismo , Animais , Barreira Hematorretiniana/fisiopatologia , Hipóxia Celular , Técnicas de Cocultura , Células Endoteliais/metabolismo , Eritropoetina/uso terapêutico , Humanos , Injeções Intravítreas , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismoRESUMO
The pathophysiology of diabetic retinopathy (DR) was complex. Under hyperglycemic conditions, the release of proinflammatory cytokines and the adhesion of leukocytes to retinal capillaries contribute to endothelial damage and the subsequent increase in vascular permeability resulting in macular edema. Melatonin, produced in the retina to regulate redox reactions and dopamine metabolism, plays protective roles against inflammation and oxidative stress. Considering its anti-inflammatory and antioxidative properties, melatonin was speculated to exert beneficial effects in DR. In this study, we characterized the protective effects of melatonin on the inner blood-retinal barrier (iBRB), as well as the possible mechanisms in experimental DR. Results showed that in diabetic rat retinas, the leakage of iBRB and the expression of inflammatory factors (VEGF, TNF-α, IL-1ß, ICAM-1, and MMP9) increased dramatically, while the expression of tight junction proteins (ZO-1, occludin, JAM-A, and claudin-5) decreased significantly. The above changes were largely ameliorated by melatonin. The in vivo data were confirmed in vitro. In addition, the protein expressions of p38 MAPK, NF-κB, and TXNIP were upregulated significantly in diabetes and were downregulated following melatonin treatment. Melatonin could maintain the iBRB integrity by upregulating the expression of tight junction proteins via inhibiting p38/TXNIP/NF-κB pathway, thus decreasing the production of inflammatory factors. This study may shed light on the development of melatonin-based DR therapy.
Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Melatonina/farmacologia , NF-kappa B/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Masculino , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacosRESUMO
OBJECTIVE: To examine the mechanisms of Nogo-B (RTN4B) in the protection of blood-retinal barrier in experimental diabetic retinopathy. METHODS: The level of Nogo-B in vitreous and plasma samples was detected with ELISA. Diabetes was induced in Sprague-Dawley rats with intraperitoneal injection of streptozotocin. The rats were injected intravitreally with adeno-associated virus (AAV) for knockdown the expression of Nogo-B in retina or/and as AAV negative control. The permeability of blood-retinal barrier was detected with Rhodamine-B-dextran leakage assay. The expressions of Nogo-B, junctional proteins, inflammatory factors and signaling pathways were examined with Western blot and quantitative real-time PCR. RESULTS: Nogo-B expression was significantly upregulated in clinical samples and experimental diabetic rat models. Under normal condition, Nogo-B knockdown resulted in the increased permeability of retinal blood vessels. In diabetic rat retinas, the vascular leakage was increased significantly, which was partially decreased by Nogo-B knockdown through increasing p/t-Src (Tyr529) and p/t-Akt (Ser473), and decreasing p/t-ERK1/2. CONCLUSION: Nogo-B was increased in diabetic retinopathy and silencing Nogo-B is a promising therapy for diabetic retinopathy.
Assuntos
Diabetes Mellitus Experimental/genética , Retinopatia Diabética/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Superfície Celular/genética , Quinases da Família src/genética , Animais , Barreira Hematorretiniana/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/terapia , Regulação da Expressão Gênica , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Retina/metabolismo , Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina/administração & dosagem , Quinases da Família src/metabolismoRESUMO
Deep mining of the molecular mechanisms underlying diabetic retinopathy (DR) is critical for the development of novel therapeutic targets. This study aimed to identify key molecular signatures involved in experimental DR on the basis of integrated bioinformatics analysis. Four datasets consisting of 37 retinal samples were downloaded from the National Center of Biotechnology Information Gene Expression Omnibus. After batch-effect adjustment, bioinformatics tools such as Networkanalyst, Enrichr, STRING, and Metascape were used to evaluate the differentially expressed genes (DEGs), perform enrichment analysis, and construct protein-protein interaction networks. The hub genes were identified using Cytoscape software. The DEGs of interest from the meta-analysis were confirmed by quantitative reverse transcription-polymerase chain reaction in diabetic rats and a high-glucose-treated retinal cell model, respectively. A total of 743 DEGs related to lens differentiation, insulin resistance, and high-density lipoprotein (HDL) cholesterol metabolism were obtained using the meta-analysis. Alterations of dynamic gene expression in the chloride ion channel, retinol metabolism, and fatty acid metabolism were involved in the course of DR in rats. Importantly, H3K27m3 modifications regulated the expression of most DEGs at the early stage of DR. Using an integrated bioinformatics approach, novel molecular signatures were obtained for different stages of DR progression, and the findings may represent distinct therapeutic strategies for DR patients.
Assuntos
Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Regulação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Animais , Linhagem Celular , Bases de Dados Factuais , Diabetes Mellitus Experimental/genética , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Perfilação da Expressão Gênica/métodos , Glucose/farmacologia , Histonas/genética , Histonas/metabolismo , Masculino , Ratos Sprague-DawleyRESUMO
Photoreceptor (PR) dysfunction or death is the key pathological change in retinal degeneration (RD). The death of PRs might be due to a primary change in PRs themselves or secondary to the dysfunction of the retinal pigment epithelium (RPE). Poly(ADP-ribose) polymerase (PARP) was reported to be involved in primary PR death, but whether it plays a role in PR death secondary to RPE dysfunction has not been determined. To clarify this question and develop a new therapeutic approach, we studied the changes in PAR/PARP in the RCS rat, a RD model, and tested the effect of PARP intervention when given alone or in combination with RPE cell transplantation. The results showed that poly(ADP-ribosyl)ation of proteins was increased in PRs undergoing secondary death in RCS rats, and this result was confirmed by the observation of similar changes in sodium iodate (SI)-induced secondary RD in SD rats. The increase in PAR/PARP was highly associated with increased apoptotic PRs and decreased visual function, as represented by lowered b-wave amplitudes on electroretinogram (ERG). Then, as we expected, when the RCS rats were treated with subretinal injection of the PARP inhibitor PJ34, the RD process was delayed. Furthermore, when PJ34 was given simultaneously with subretinal ARPE-19 cell transplantation, the therapeutic effects were significantly improved and lasted longer than those of ARPE-19 or PJ34 treatment alone. These results provide a potential new approach for treating RD.
Assuntos
Modelos Animais de Doenças , Fenantrenos/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Poli Adenosina Difosfato Ribose/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Western Blotting , Sobrevivência Celular/fisiologia , Transplante de Células , Células Cultivadas , Eletrorretinografia , Marcação In Situ das Extremidades Cortadas , Células Fotorreceptoras de Vertebrados/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Mutantes , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologiaRESUMO
MicroRNAs (miRNAs) have been shown to play critical roles in the pathogenesis and progression of degenerative retinal diseases like age-related macular degeneration (AMD). In this study, we first demonstrated that miR-24 plays an important role in maintaining retinal structure and visual function of rats by targeting chitinase-3-like protein 1 (CHI3L1). In the retinal pigment epithelial (RPE) cells of Royal College of Surgeons (RCS) rats, an animal model of genetic retinal degeneration (RD), miR-24 was found lower and CHI3L1 level was higher in comparison with those in Sprague-Dawley (SD) rats. Other changes in the eyes of RCS rats include activated AKT/mTOR and ERK pathways and abnormal autophagy in the RPE cells. Such roles of miR-24 and CHI3L1 were further confirmed in RCS rats by subretinal injection of agomiR-24, which decreased CHI3L1 level and preserved retinal structure and function. Upstream, NF-κB was identified as the regulator of miR-24 in the RPE cells of these rats. On the other hand, in SD rats, intraocular treatment of antagomiR-24 induced pathological changes similar to those in RCS rats. The results revealed the protective roles for miR-24 to RPE cells and a mechanism for RD in RCS rats was proposed: extracellular stress stimuli first activate the NF-κB signaling pathway, which lowers miR-24 expression so that CHI3L1 increased. CHI3L1 sequentially results in aberrant autophagy and RPE dysfunction by activating AKT/mTOR and ERK pathways. Taken together, although the possibility, that the therapeutic effects in RCS rats are caused by other transcriptional changes regulated by miR-24, cannot be excluded, these findings indicate that miR-24 protects rat retina by targeting CHI3L1. Thus, miR-24 and CHI3L1 might be the targets for developing more effective therapy for degenerative retinal diseases like AMD.
Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , MicroRNAs/fisiologia , Retina/metabolismo , Degeneração Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/metabolismo , Animais , Autofagia , Western Blotting , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Eletrorretinografia , Marcação In Situ das Extremidades Cortadas , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Retina/fisiopatologia , Degeneração Retiniana/enzimologia , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/fisiopatologia , Transdução de SinaisRESUMO
PURPOSE: To explore the mechanisms of erythropoietin (EPO) in maintaining outer blood-retinal barrier (BRB) in diabetic rats. METHODS: Sprague-Dawley rats were rendered diabetic with intraperitoneal injection of streptozotocin, and then followed by intravitreal injection of EPO. Two and four weeks later, the permeability of outer BRB was examined with FITC-dextran leakage assay, following a method to demarcate the inner and outer retina based on retinal blood supply. The glyoxal-treated ARPE-19 cells, incubated with EPO, soluble EPO receptor (sEPOR), Gö6976, or digoxin, were studied for cell viability and barrier function. The expressions of ZO-1, occludin, VEGFR2, HIF-1α, MAPKs, and AKT were examined with Western blot and immunofluorescence. RESULTS: The major Leakage of FITC-dextran was detected in the outer nuclear layer in both 2- and 4-week diabetic rats. The leakage was largely ameliorated in EPO-treated diabetic rats. The protein expressions of ZO-1 and occludin in the RPE-Bruch's membrane choriocapillaris complex were significantly decreased, whereas HIF-1α and JNK pathways were activated, in 4-week diabetic rats. These changes were prevented by EPO treatment. The in vitro study with ARPE-19 cells confirmed these changes, and the protective effect of EPO was abolished by sEPOR. Gö6976 and digoxin rescued the tight junction and barrier function in glyoxal-treated ARPE-19 cells. CONCLUSIONS: In early diabetic rats, the outer BRB might be more severely damaged and its breakdown is the major factor for retinal oedema. EPO maintains the outer BRB integrity through down-regulation of HIF-1α and JNK signallings, and thus up-regulating ZO-1 and occludin expressions in RPE cells.
Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Eritropoetina/administração & dosagem , Ocludina/metabolismo , Vasos Retinianos/fisiopatologia , Regulação para Cima , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Western Blotting , Diabetes Mellitus Experimental , Retinopatia Diabética/metabolismo , Retinopatia Diabética/fisiopatologia , Injeções Intravítreas , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Vasos Retinianos/efeitos dos fármacosRESUMO
The pathological change of retinal pigment epithelial (RPE) cells is one of the main reasons for the development of age-related macular degeneration (AMD). Thus, cultured RPE cells are a proper cell model for studying the etiology of AMD in vitro. However, such cultured RPE cells easily undergo epithelial-mesenchymal transition (EMT) that results in changes of cellular morphology and functions of the cells. To restore and maintain the mesenchymal-epithelial transition (MET) of the cultured RPE cells, we cultivated dedifferentiated porcine RPE (pRPE) cells and compared their behaviors in four conditions: 1) in cell culture dishes with DMEM/F12 containing FBS (CC dish-FBS), 2) in petri dishes with DMEM/F12 containing FBS (Petri dish-FBS), 3) in cell culture dishes with DMEM/F12 containing N2 and B27 supplements (CC dish-N2B27), and 4) in petri dishes with DMEM/F12 containing N2 and B27 (Petri dish-N2B27). In addition to observing the cell morphology and behavior, RPE specific markers, as well as EMT-related genes and proteins, were examined by immunostaining, quantitative real-time PCR and Western blotting. The results showed that dedifferentiated pRPE cells maintained EMT in CC dish-FBS, Petri dish-FBS and CC dish-N2B27 groups, whereas MET was induced when the dedifferentiated pRPE cells were cultured in Petri dish-N2B27. Such induced pRPE cells showed polygonal morphology with increased expression of RPE-specific markers and decreased EMT-associated markers. Similar results were observed in induced pluripotent stem cell-derived RPE cells. Furthermore, during the re-differentiation of those dedifferentiated pRPE cells, Petri dish-N2B27 reduced the activity of RhoA and induced F-actin rearrangement, which promoted the nuclear exclusion of transcriptional co-activator with PDZ-binding motif (TAZ) and TAZ target molecule zinc finger E-box binding protein (ZEB1), both of which are EMT inducing factors. This study provides a simple and reliable method to reverse dedifferentiated phenotype of pRPE cells into epithelialized phenotype, which is more appropriate for studying AMD in vitro, and suggests that MET of other cell types might be induced by a similar approach.
Assuntos
Técnicas de Cultura de Células/métodos , Transição Epitelial-Mesenquimal/fisiologia , Epitélio Pigmentado da Retina/citologia , Animais , Biomarcadores/metabolismo , Western Blotting , Desdiferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Reação em Cadeia da Polimerase , Epitélio Pigmentado da Retina/metabolismo , SuínosRESUMO
miRs play critical roles in oxidative stress-related retinopathy pathogenesis. miR-365 was identified in a previously constructed library from glyoxal-treated rat Müller cell. This report explores epigenetic alterations in Müller cells under oxidative stress to develop a novel therapeutic strategy. To examine the miR-365 expression pattern, in situ hybridization and quantitative RT-PCR were performed. Bioinformatical analysis and dual luciferase report assay were applied to identify and confirm target genes. Streptozotocin (STZ)-treated rats were used as the diabetic retinopathy (DR) model. Lentivirus-mediated anti-miR-365 was delivered subretinally and intravitreally into the rats' eyes. The functional and structural changes were evaluated by electroretinogram (ERG), histologically, and through examination of expression levels of metallopeptidase inhibitor 3 (Timp3), glial fibrillary acidic protein (Gfap), recoverin (Rcvrn) and vascular endothelia growth factor A (Vegfa). Oxidative stress factors and pro-inflammatory cytokines were analyzed. miR-365 expression was confirmed in the glyoxal-treated rat Müller cell line (glyoxal-treated rMC-1). In the retina, miR-365 mainly localized in the inner nuclear layer (INL). The increased miR-365 participated in Müller cell gliosis through oxidative stress aggravation, as observed in glyoxal-treated rMC-1 and DR rats before 6 weeks. Timp3 was a target and negatively regulated by miR-365. When miR-365 was inhibited, Timp3 expression was upregulated, Müller cell gliosis was alleviated, and retinal oxidative stress was attenuated. Visual function was also partially rescued as detected by ERG. miR-365 was found to be highly expressed in the retina and the abnormality of miR-365/Timp3 pathway is closely related to the pathology, like Müller gliosis, and the visual injury in DR. The mechanism might be through oxidative stress, and miR-365/Timp3 could be a potential therapeutic target for treating DR.
Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Retinopatia Diabética/fisiopatologia , MicroRNAs/fisiologia , Estresse Oxidativo/fisiologia , Retina/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Análise de Variância , Animais , Far-Western Blotting , Células Cultivadas , Eletrorretinografia , Células Ependimogliais/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismoRESUMO
Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1ß (il-1ß) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype.
Assuntos
Macrófagos/microbiologia , Fenótipo , Infecções por Pseudomonas/microbiologia , Cicatrização/fisiologia , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Expressão Gênica/fisiologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
OBJECTIVE: To evaluate the effect of different local treatment strategies on survival outcomes in patients with Stage IVB cervical squamous cell carcinoma (SCC) and adenocarcinoma. METHODS: Patients diagnosed with Stage IVB cervical SCC and adenocarcinoma between 2004 and 2015 were included from the Surveillance, Epidemiology, and End Results (SEER) database. Subgroup analysis was performed in those diagnosed between 2010 and 2015 and available for the sites of distant metastases. RESULTS: In total, 706 patients were identified in this study, including 378 (53.5%) and 328 (46.5%) diagnosed in 2004-2009 and 2010-2015, respectively. There were 525 (74.4%) and 181 (25.6%) patients with SCC and adenocarcinoma, respectively. Moreover, 274 (38.8%) and 432 (61.2%) patients received hysterectomy and primary radiotherapy, respectively. The results of the multivariate Cox regression analysis showed that histology and local treatment strategies were not related to cause-specific survival (CSS) and overall survival. In the SCC patients, patients who received primary radiotherapy had similar CSS (P = 0.312) and overall survival (P = 0.390) compared with those treated with surgery. In the adenocarcinoma patients, those who received primary radiotherapy had inferior CSS (P = 0.003) and overall survival (P < 0.001) compared with those treated with surgery. Similar results were found in those diagnosed 2004-2015 and 2010-2015 after propensity score matching. CONCLUSIONS: For patients with Stage IVB cervical cancer who received local therapy, surgery, and primary radiotherapy had similar survival in cervical SCC, whereas surgery had better survival outcomes compared with primary radiotherapy in those with cervical adenocarcinoma.
Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias do Colo do Útero/patologia , Estadiamento de Neoplasias , Adenocarcinoma/terapia , Adenocarcinoma/patologia , Prognóstico , Estudos RetrospectivosRESUMO
Purpose: To analyze changes in survival outcomes in patients with ovarian clear cell carcinoma (OCCC) treated consecutively over a 16-year period using a population-based cohort. Methods: We conducted a retrospective analysis of OCCC from 2000 to 2015 using data from the Surveillance, Epidemiology, and End Results (SEER) program. The ovarian cancer-specific survival (OCSS) and overall survival (OS) were analyzed according to the year of diagnosis. Joinpoint Regression Program, Kaplan-Meier analysis, and multivariate Cox regression analyses were used for statistical analysis. Results: We included 4257 patients in the analysis. The analysis of annual percentage change in OCSS (P=0.014) and OS (P=0.006) showed that patients diagnosed in later years had significantly better outcomes compared to those diagnosed in early years. The results of the multivariate Cox regression analyses showed that the year of diagnosis was the independent prognostic factor associated with OCSS (P=0.004) and had a borderline effect on OS (P=0.060). Regarding the SEER staging, the OCSS (P=0.017) and OS (P=0.004) of patients with distant stage showed a significant trend toward increased, while no significant trends were found in the survival of patients with localized or regional stage diseases. Similar trends were found in those aged <65 years or those treated with surgery and chemotherapy. However, no statistically significant changes in the survival rate were found in those aged ≥65 years or those receiving surgery alone regardless of SEER stage during the study period. Conclusions: Our study observed a significant increase in the survival outcomes in OCCC from 2000 to 2015, and patients aged <65 years and those with distant stage experienced a greater improvement in survival.
RESUMO
BACKGROUND: To illuminate the precise roles of MOB Kinase Activator 1 A (MOB1A) in the development of ovarian cancer (OC). METHODS: MOB1A expression and clinical data of OC were obtained from the public database on gene expression and proteomics. Meanwhile, verification of expression was carried out in Gene Expression Omnibus, the Human Protein Atlas, and OC cell lines. The prognosis of MOB1A was explored in the Kaplan-Meier plotter. RNA interference and lentivirus vectors were applied to construct knockdown and overexpressed cell models. Changes in the malignant behaviors of OC cells were detected by cholecystokinin octopeptide cell counting kit, wound healing, colony formation assay, transwell, flow cytometry assays, and in vivo experiments. Changes in proteins in the PI3K and autophagy-related makers were detected by western blot analysis. RESULTS: The expression of MOB1A was significantly upregulated and accompanied by an inferior survival rate in OC. Knockdown of MOB1A inhibited the proliferation, invasion, migration, and cell cycle of OC cells, whereas induced cell autophagy. MOB1A upregulation had the opposite effects. In addition, bioinformatics analysis and western blot experiments showed that MOB1A plays an important role in the PI3K/AKT/mTOR pathway. CONCLUSIONS: Our findings indicated that MOB1A is highly expressed and related to poor prognosis in OC. MOB1A plays a role in promoting the malignant biological behavior of tumor cells through PI3K/AKT/mTOR signaling pathway.
RESUMO
OBJECTIVE: To investigate the clinical role and biological function of receptor-interacting protein kinase 4 (RIPK4) in ovarian cancer (OC). METHODS: We conducted a comprehensive analysis of the expression and prognostic role of RIPK4 in OC using various public databases including The Cancer Genome Atlas, Oncomine, and Kaplan-Meier plotter. In vitro studies included wound healing, cell migration and invasion, cell proliferation, and cell apoptosis assays as well as vascular mimicry experiments. In vivo studies were conducted using subcutaneous and intraperitoneal xenografts. RESULTS: Our findings revealed that RIPK4 was significantly overexpressed in OC tissue compared to normal ovarian tissue. Moreover, the overexpression of RIPK4 was associated with advanced-stage disease and a poor prognosis in OC patients. RIPK4 silencing resulted in significant inhibition of intraperitoneal tumor growth, invasion, and vascular mimicry in OC cells. Furthermore, downregulation of RIPK4 inhibited the epithelial-mesenchymal transition of OC cells both in vitro and in vivo by promoting the expression of E-cadherin and inhibiting the expression of N-cadherin. CONCLUSION: The results of this study suggest that RIPK4 may function as an oncogene in the development and prognosis of OC.
Assuntos
Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/genéticaRESUMO
BACKGROUND: Despite aggressive local and regional therapy, triple-negative breast cancer (TNBC) is characterized by an increased risk of locoregional recurrence. RNA-sequencing data has identified a large number of circRNAs in primary breast cancers, but the role of specific circRNAs in regulating the radiosensitivity of TNBC is not fully understood. This research aimed to investigate the function of circNCOR1 in the radiosensitivity of TNBC. METHODS: CircRNA high-throughput sequencing was conducted on two breast cancer MDA-MB-231 and BT549 cell lines after 6 Gy radiation. The relationship between circNCOR1, hsa-miR-638, and CDK2 was determined by RNA immunoprecipitation (RIP), FISH and luciferase assays. The proliferation and apoptosis of breast cancer cells were measured by CCK8, flow cytometry, colony formation assays, and western blot. RESULTS: Differential expression of circRNAs was closely related to the proliferation of breast cancer cells after irradiation. Overexpression of circNCOR1 facilitated the proliferation of MDA-MB-231 and BT549 cells and impaired the radiosensitivity of breast cancer cells. Additionally, circNCOR1 acted as a sponge for hsa-miR-638 to regulate the downstream target protein CDK2. Overexpression of hsa-miR-638 promoted apoptosis of breast cancer cells, while overexpression of CDK2 alleviated apoptosis and increased proliferation and clonogenicity. In vivo, overexpression of circNCOR1 partially reversed radiation-induced loosening of tumor structures and enhanced tumor cell proliferation. CONCLUSION: Our results demonstrated that circNCOR1 bounds to hsa-miR-638 and targets CDK2, thereby regulating the radiosensitivity of TNBC.
Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , RNA Circular/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Movimento Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismoRESUMO
BACKGROUND: T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS: A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS: Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS: Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.
Assuntos
Conjuntivite Alérgica , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Conjuntivite Alérgica/tratamento farmacológico , Conjuntivite Alérgica/patologia , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Cordão UmbilicalRESUMO
In our search for environmentally benign insecticides with high activity, low toxicity and low residue, a novel series of amides containing N- pyridylpyrazole moieties were designed and synthesized. The structures of the title compounds were characterized and confirmed by 1H-NMR and elemental analysis. Furthermore, the structure of compound 7l was determined by single crystal X-ray diffraction. The preliminary bioassay tests showed that some of them exhibited good insecticidal activities against Mythimna separata Walker, Plutella xylostella (Linnaeus, 1758) and Laphygma exigua Hübner.
Assuntos
Amidas/química , Amidas/síntese química , Inseticidas/química , Inseticidas/síntese química , Mariposas , Pirazóis/análise , Animais , Desenho de Fármacos , Estrutura Molecular , Pirazóis/química , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Ovarian cancer (OC) is the most deadly tumor in gynecology and there is no effective biomarker for diagnosis and treatment. The role of Transmembrane Protein 98 (TMEM98) in ovarian cancer is still unclear. METHODS: The expression and prognostic effect of TMEM98 in OC were analyzed using the public database. Cell Counting Kit-8 proliferation experiment, scratch experiment, Transwell invasion experiment, flow cytometry, TUNEL staining, and in vivo and vitro experiment were used. RESULTS: TMEM98 was significantly downregulated in OC tissues and cell lines compared to the normal ovarian tissue and cells lines. In addition, patients with lower TMEM98 levels exhibited inferior survival. Low expression of the TMEM98 promoted proliferation, migration, invasion, vasculogenic mimicry, and inhibited apoptosis in OC cells. The expression of Caspase-3 was significantly downregulated and the expression of Bcl-2 was significantly increased in the silencing-TMEM98 group. Moreover, low expression of TMEM98 promotes OC development in vivo. Bioinformatics analysis showed that TMEM98 expression was negatively correlated with poly ADP-ribose polymerase expression. CONCLUSIONS: This study demonstrates that TMEM98 is low expressed in OC and impacts the prognosis of OC patients. TMEM98 inhibits proliferation and promotes apoptosis and finally exerts a certain tumor-suppressor effect on OC.