Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205077

RESUMO

Notch3 promotes mammary luminal cell specification and forced Notch3 activation can induce mammary tumor formation. However, recent studies suggest a tumor-suppressive role for Notch3. Here, we report on Notch3 expression and functional analysis in the mouse mammary gland. Notch3 is expressed in the luminal compartment throughout mammary gland development, but switches to basal cells with initiation of post-lactational involution. Deletion of Notch3 caused a decrease of Notch activation in luminal cells and diminished luminal progenitors at puberty, as well as reduced alveolar progenitors during pregnancy. Parous Notch3-/- mammary glands developed hyperplasia with accumulation of CD24hiCD49flo cells, some of which progressed to invasive tumors with luminal features. Notch3 deletion abolished Notch activation in basal cells during involution, accompanied by altered apoptosis and reduced brown adipocytes, leading to expansion of parity-identified mammary epithelial cells (PI-MECs). Interestingly, the postpartum microenvironment is required for the stem cell activity of Notch3-/- PI-MECs. Finally, high expression of NOTCH3 is associated with prolonged survival in patients with luminal breast cancer. These results highlight an unexpected tumor-suppressive function for Notch3 in the parous mammary gland through restriction of PI-MEC expansion.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Animais , Células Epiteliais/metabolismo , Feminino , Lactação , Camundongos , Camundongos Transgênicos , Gravidez , Células-Tronco
2.
Anim Genet ; 55(1): 99-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087834

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Animais , Camundongos , Fibrose , Rim/metabolismo , Rim/patologia , Mutação , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia
3.
EMBO J ; 38(13): e101067, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268604

RESUMO

A prominent function of TGIF1 is suppression of transforming growth factor beta (TGF-ß) signaling, whose inactivation is deemed instrumental to the progression of pancreatic ductal adenocarcinoma (PDAC), as exemplified by the frequent loss of the tumor suppressor gene SMAD4 in this malignancy. Surprisingly, we found that genetic inactivation of Tgif1 in the context of oncogenic Kras, KrasG12D , culminated in the development of highly aggressive and metastatic PDAC despite de-repressing TGF-ß signaling. Mechanistic experiments show that TGIF1 associates with Twist1 and inhibits Twist1 expression and activity, and this function is suppressed in the vast majority of human PDACs by KrasG12D /MAPK-mediated TGIF1 phosphorylation. Ablating Twist1 in KrasG12D ;Tgif1KO mice completely blunted PDAC formation, providing the proof-of-principle that TGIF1 restrains KrasG12D -driven PDAC through its ability to antagonize Twist1. Collectively, these findings pinpoint TGIF1 as a potential tumor suppressor in PDAC and further suggest that sustained activation of TGF-ß signaling might act to accelerate PDAC progression rather than to suppress its initiation.


Assuntos
Carcinoma Ductal Pancreático/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/genética
4.
Am J Pathol ; 190(11): 2194-2202, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32805234

RESUMO

The prostate epithelium consists of predominantly luminal cells that express androgen receptor and require androgens for growth. As a consequence, the depletion of testicular androgens in patients with prostate cancer results in tumor regression. However, it eventually leads to a castration-resistant disease that is highly metastatic. In this report, a mouse model of metastatic prostate cancer was generated through the deletion of the tumor-suppressor gene Trp53 in conjunction with oncogenic activation of the proto-oncogene Kras. These mice developed early-onset metastatic prostate cancer with complete penetrance. Tumors from these mice were poorly differentiated adenocarcinoma, characterized by extensive epithelial-mesenchymal transition. With no or a very low level of androgen receptor expression, the tumor cells were resistant to androgen receptor inhibition. Pik3cg, encoding phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ (Pi3kγ), was highly expressed in these tumors, and pharmacologic inhibition of Pi3kγ blocked tumor cell growth in vitro, reversed epithelial-mesenchymal transition, and abated tumor metastasis in vivo. Immunohistochemistry analysis in human prostate cancer specimens showed that the expression of PIK3CG was significantly associated with advanced clinical stages. Taken together, these results suggest that PIK3CG plays an important role in the progression and metastasis of prostate cancer, and may represent a new therapeutic target in the metastatic castration-resistant prostate cancer.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Masculino , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proto-Oncogene Mas , Receptores Androgênicos/genética
5.
PLoS Genet ; 14(9): e1007660, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188892

RESUMO

FGF signaling is a potent inducer of lacrimal gland development in the eye, capable of transforming the corneal epithelium into glandular tissues. Here, we show that genetic ablation of the Pea3 family of transcription factors not only disrupted the ductal elongation and branching of the lacrimal gland, but also biased the lacrimal gland epithelium toward an epidermal cell fate. Analysis of high-throughput gene expression and chromatin immunoprecipitation data revealed that the Pea3 genes directly control both the positive and negative feedback loops of FGF signaling. Importantly, Pea3 genes are also required to suppress aberrant Notch signaling which, if gone unchecked, can compromise lacrimal gland development by preventing the expression of both Sox and Six family genes. These results demonstrate that Pea3 genes are key FGF early response transcriptional factors, programing the genetic landscape for cell fate determination.


Assuntos
Diferenciação Celular/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Aparelho Lacrimal/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Animais , Células Epidérmicas/fisiologia , Células Epiteliais/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Aparelho Lacrimal/citologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Receptores Notch/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição/genética
6.
Immunity ; 30(2): 254-63, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19217325

RESUMO

Notch2 activation induced by Delta-like-1 (DL1) drives development of splenic marginal zone (MZ) B cells, an innate-like lineage that protects against sepsis. DL1 interacts with Notch2 weakly, but it is not known whether enhancement of DL1-induced Notch2 activation by Fringe glycosyltransferases is important for MZ B cell development. Furthermore, DL1-expressing cells that promote MZ B cell development have not been identified. We show that Lunatic Fringe (Lfng) and Manic Fringe (Mfng) cooperatively enhanced the DL1-Notch2 interaction to promote MZ B cell development. We also identified radio-resistant red pulp endothelial cells in the splenic MZ that express high amounts of DL1 and promoted MZ B generation. Finally, MZ B cell precursor competition for DL1 homeostatically regulated entry into the MZ B cell pool. Our study has revealed that the Fringe-Notch2 interaction has important functions in vivo and provides insights into mechanisms regulating MZ B cell development.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Células Endoteliais/imunologia , Glicosiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas/metabolismo , Baço/imunologia , Animais , Fusão Gênica Artificial , Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação ao Cálcio , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Endoteliais/citologia , Glucosiltransferases , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Proteínas de Homeodomínio , Camundongos , Camundongos Knockout , Proteínas/genética , Proteínas/imunologia , RNA Mensageiro/genética , Receptor Notch2/metabolismo , Baço/citologia , Baço/metabolismo , Fatores de Transcrição HES-1
7.
Dev Dyn ; 242(6): 678-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23526493

RESUMO

BACKGROUND: The Notch signaling pathway plays complex roles in developing lungs, including regulation of proximodistal fates, airway cell specification and differentiation. However, the specific Notch-mediated signals involved in lung development remain unclear. RESULTS: Here we report that Jagged1 is expressed in a subset of bronchial and bronchiolar epithelial cells, where it controls proximal airway cell fate and differentiation. In agreement with previous studies involving disruption of all Notch signaling, we found that deletion of Jagged1 in airway epithelium increased the number of ciliated cells at the expense of Clara cells, a phenotype associated with downregulation of Hes1. Deletion of Jagged1 also led to an increased number of pulmonary neuroendocrine cells (PNEC), suggesting that Jagged1/Notch signaling inhibits PNEC cell fate. As expected, Jagged1 deletion did not affect alveolar cell differentiation, although alveolar septation was impaired, likely an indirect effect of proximal airway defects. Finally, in the postnatal lung, Jagged1 deletion induced mucous metaplasia, accompanied by downregulation of Hes1 and Hes5. CONCLUSIONS: Our results demonstrate that Jagged1-mediated Notch signaling regulates multiple cell fate decisions as well as differentiation in the respiratory system to coordinate lung development and to maintain a balance of airway cell types in adult life.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Pulmão/embriologia , Proteínas de Membrana/fisiologia , Receptores Notch/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular , Células Epiteliais/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Pulmão/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Células Neuroendócrinas/metabolismo , Fenótipo , Proteínas Serrate-Jagged , Transdução de Sinais , Fatores de Tempo
8.
Front Oncol ; 14: 1373760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646436

RESUMO

Colorectal cancer, with the liver being the most common site of distant metastasis, followed by the lungs and bones. Although reports of metastasis to the testis exist, paratesticular metastasis is extremely rare. A 37-year-old male presented with scrotal swelling. Ultrasound revealed hydrocele of the tunica vaginalis. The patient underwent routine surgical treatment, and postoperative pathology of the tunica vaginalis indicated adenocarcinoma of gastrointestinal origin. Colonoscopic biopsy confirmed adenocarcinoma of the sigmoid colon. After six months of systemic therapy, tumor reduction surgery was performed in conjunction with tunica vaginalis excision. Postoperative pathology suggested histological similarity in both sites, with immunohistochemistry results supporting the diagnosis of sigmoid colon adenocarcinoma metastasizing to the tunica vaginalis. We conducted a literature review, summarizing and discussing clinical presentations, metastatic pathways, and diagnostic approaches.

9.
Blood ; 117(4): 1184-95, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21097675

RESUMO

Lunatic Fringe (Lfng) enhances Notch1 activation by Delta-like 4 (DL4) to promote Notch1-dependent T-lineage commitment of thymus-seeding progenitors. Subsequently, Notch1 and T-cell receptor-ß (TCRß)-containing pre-TCR complexes signal CD4/CD8 double-negative 3 (DN3) committed T-cell progenitors to survive, proliferate, and differentiate into CD4/CD8 double-positive (DP) αß T-cell precursors. Few DP thymocytes develop without Notch1 or pre-TCR signals, whereas ectopic Notch1 activation causes T-cell leukemia. However, mechanisms of a Notch-pre-TCR collaboration during this "ß-selection" process are poorly understood. We genetically manipulated Lfng to attenuate or enhance Notch1 activation in DN3 thymocytes without inducing leukemogenesis. We show that Lfng temporally sustains DL-induced Notch1 signaling to prolong proliferative self-renewal of pre-DP thymocytes. Pre-TCR signaling greatly augmented Notch trophic functions to promote robust proliferation of pre-DP progenitors. In contrast, in the absence of DL/Notch signaling, pre-TCR-expressing progenitors rapidly atrophied and differentiated into DP thymocytes. Thus, Lfng prolongs Notch1 signaling to promote self-renewal more than differentiation during the early stages of ß-selection. Our data provide novel insights into the Notch-pre-TCR collaboration, and suggest that decreasing Lfng expression during the DN3-DP transition minimizes the potent leukemogenic potential of Notch1 signaling.


Assuntos
Proliferação de Células , Glicosiltransferases/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células Progenitoras Linfoides/fisiologia , Proteínas de Membrana/fisiologia , Receptor Notch1/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proteínas de Ligação ao Cálcio , Células Cultivadas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Progenitoras Linfoides/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/metabolismo
10.
Adv Cancer Res ; 159: 1-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268393

RESUMO

The Notch signaling pathway is an evolutionary conserved signal transduction cascade that is critical to embryonic and postnatal development, but aberrant Notch signaling is also implicated in tumorigenesis of many organs including the pancreas. Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy in the pancreas, with a dismally low survival rate due to the late-stage diagnosis and peculiar therapeutic resistance. Upregulation of the Notch signaling pathway has been found in preneoplastic lesions as well as PDACs in genetically engineered mouse models and human patients, and inhibition of the Notch signaling suppresses tumor development and progression in mice as well as patient-derived xenograft tumor growth, suggesting a critical role for Notch in PDAC. However, the role of Notch signaling pathway remains contentious, exemplified by differential functions of Notch receptors and contrasting outcomes of abolishing Notch signaling in murine PDAC models with distinct cell-of-origin or at different stages. Glycosylation of Notch receptors represents a powerful regulatory mechanism of Notch signaling, and its functional significance in PDAC has begun to emerge. Beyond its impact on tumor cells, Notch signaling is an important regulator of the components of pancreatic tumor microenvironment, including blood vasculature, stellate cells, fibroblasts, and immune cells. Finally, Notch may act as a tumor suppressor in pancreatic neuroendocrine tumor, the second most common pancreatic neoplasm with the incidence on rise. This review summarizes the research on the complex roles of Notch signaling in pancreatic tumorigenesis and the development of potential Notch-targeting therapies for pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/metabolismo , Transformação Celular Neoplásica , Carcinogênese , Transdução de Sinais , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Receptores Notch/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
11.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36828547

RESUMO

The transcription factor Prdm16 functions as a potent suppressor of transforming growth factor-beta (TGF-ß) signaling, whose inactivation is deemed essential to the progression of pancreatic ductal adenocarcinoma (PDAC). Using the KrasG12D-based mouse model of human PDAC, we surprisingly found that ablating Prdm16 did not block but instead accelerated PDAC formation and progression, suggesting that Prdm16 might function as a tumor suppressor in this malignancy. Subsequent genetic experiments showed that ablating Prdm16 along with Smad4 resulted in a shift from a well-differentiated and confined neoplasm to a highly aggressive and metastatic disease, which was associated with a striking deviation in the trajectory of the premalignant lesions. Mechanistically, we found that Smad4 interacted with and recruited Prdm16 to repress its own expression, therefore pinpointing a model in which Prdm16 functions downstream of Smad4 to constrain the PDAC malignant phenotype. Collectively, these findings unveil an unprecedented antagonistic interaction between the tumor suppressors Smad4 and Prdm16 that functions to restrict PDAC progression and metastasis.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Ligação a DNA , Neoplasias Pancreáticas , Proteína Smad4 , Fatores de Transcrição , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas
12.
Front Immunol ; 14: 1244159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901240

RESUMO

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods: We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results: We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion: Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.


Assuntos
Sulindaco , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Sulindaco/farmacologia , Sulindaco/uso terapêutico , Secretases da Proteína Precursora do Amiloide , Neoplasias de Mama Triplo Negativas/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças
13.
Adv Exp Med Biol ; 727: 89-98, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22399341

RESUMO

Notch signaling plays an essential role in development and homeostasis of multiple organs including the lung. Dysregulation of Notch signaling has been implicated in various lung diseases including lung cancer. Here we review functions of Notch signaling in coordinating events during lung development, such as early proximodistal fate generation and branching, airway epithelial cell fate specification, alveogenesis and pulmonary vascular development. We also discuss roles of Notch in chronic obstructive pulmonary disease, progressive pulmonary fibrosis, pulmonary arterial hypertension, asthma and lung cancer.


Assuntos
Pneumopatias/metabolismo , Pneumopatias/patologia , Pulmão/citologia , Pulmão/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Humanos
14.
Cell Rep ; 41(6): 111623, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351408

RESUMO

A long-standing question in the pancreatic ductal adenocarcinoma (PDAC) field has been whether alternative genetic alterations could substitute for oncogenic KRAS mutations in initiating malignancy. Here, we report that Neurofibromin1 (NF1) inactivation can bypass the requirement of mutant KRAS for PDAC pathogenesis. An in-depth analysis of PDAC databases reveals various genetic alterations in the NF1 locus, including nonsense mutations, which occur predominantly in tumors with wild-type KRAS. Genetic experiments demonstrate that NF1 ablation culminates in acinar-to-ductal metaplasia, an early step in PDAC. Furthermore, NF1 haploinsufficiency results in a dramatic acceleration of KrasG12D-driven PDAC. Finally, we show an association between NF1 and p53 that is orchestrated by PML, and mosaic analysis with double markers demonstrates that concomitant inactivation of NF1 and Trp53 is sufficient to trigger full-blown PDAC. Together, these findings open up an exploratory framework for apprehending the mechanistic paradigms of PDAC with normal KRAS, for which no effective therapy is available.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Mutação , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neurofibromina 1/metabolismo , Neoplasias Pancreáticas
15.
Front Immunol ; 13: 987298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090975

RESUMO

A critical feature of cancer is the ability to induce immunosuppression and evade immune responses. Tumor-induced immunosuppression diminishes the effectiveness of endogenous immune responses and decreases the efficacy of cancer immunotherapy. In this study, we describe a new immunosuppressive pathway in which adenosine promotes Casitas B-lineage lymphoma b (Cbl-b)-mediated Notch1 degradation, causing suppression of CD8+ T-cells effector functions. Genetic knockout and pharmacological inhibition of Cbl-b prevents Notch1 degradation in response to adenosine and reactivates its signaling. Reactivation of Notch1 results in enhanced CD8+ T-cell effector functions, anti-cancer response and resistance to immunosuppression. Our work provides evidence that targeting the Cbl-b-Notch1 axis is a novel promising strategy for cancer immunotherapy.


Assuntos
Linfoma , Neoplasias , Adenosina , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Receptor Notch1/genética , Receptor Notch1/metabolismo
16.
J Cell Physiol ; 226(7): 1940-52, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21506125

RESUMO

Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/metabolismo , Receptores Notch/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Feminino , Hormônios Esteroides Gonadais/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Jagged-1 , Lactação/genética , Ligantes , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Ovariectomia , Gravidez , Interferência de RNA , RNA Mensageiro/metabolismo , Receptor Notch2/genética , Receptor Notch3 , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Serrate-Jagged , Transfecção
17.
Life Sci Alliance ; 4(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268505

RESUMO

Notch signaling exerts both oncogenic and tumor-suppressive functions in the pancreas. In this study, deletion of Jag1 in conjunction with oncogenic Kras G12D expression in the mouse pancreas induced rapid development of acinar-to-ductal metaplasia and early stage pancreatic intraepithelial neoplasm; however, culminating in cystic neoplasms rather than ductal adenocarcinoma. Most cystic lesions in these mice were reminiscent of serous cystic neoplasm, and the rest resembled intraductal papillary mucinous neoplasm. Jag1 expression was lost or decreased in cystic lesions but retained in adenocarcinoma in these mice, so was the expression of Sox9. In pancreatic cancer patients, JAG1 expression is higher in cancerous tissue, and high JAG1 is associated with poor overall survival. Expression of SOX9 is correlated with JAG1, and high SOX9 is also associated with poor survival. Mechanistically, Jag1 regulates expression of Lkb1, a tumor suppressor involved in the development of pancreatic cystic neoplasm. Collectively, Jag1 can act as a tumor suppressor in the pancreas by delaying precursor lesions, whereas loss of Jag1 promoted a phenotypic switch from malignant carcinoma to benign cystic lesions.


Assuntos
Transformação Celular Neoplásica/genética , Proteína Jagged-1/deficiência , Neoplasias Pancreáticas/etiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Knockout , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição SOX9 , Transdução de Sinais
18.
Traffic ; 9(5): 742-54, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18298590

RESUMO

Intersectins (Itsn) are conserved EH and SH3 domain containing adaptor proteins. In Drosophila melanogaster, ITSN is required to regulate synaptic morphology, to facilitate efficient synaptic vesicle recycling and for viability. Here, we report our genetic analysis of Caenorhabditis elegans intersectin. In contrast to Drosophila, C. elegans itsn-1 protein null mutants are viable and display grossly normal locomotion and development. However, motor neurons in these mutants show a dramatic increase in large irregular vesicles and accumulate membrane-associated vesicles at putative endocytic hotspots, approximately 300 nm from the presynaptic density. This defect occurs precisely where endogenous ITSN-1 protein localizes in wild-type animals and is associated with a significant reduction in synaptic vesicle number and reduced frequency of endogenous synaptic events at neuromuscular junctions (NMJs). ITSN-1 forms a stable complex with EHS-1 (Eps15) and is expressed at reduced levels in ehs-1 mutants. Thus, ITSN-1 together with EHS-1, coordinate vesicle recycling at C. elegans NMJs. We also found that both itsn-1 and ehs-1 mutants show poor viability and growth in a Disabled (dab-1) null mutant background. These results show for the first time that intersectin and Eps15 proteins function in the same genetic pathway, and appear to function synergistically with the clathrin-coat-associated sorting protein, Disabled, for viability.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Junção Neuromuscular/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Drosophila melanogaster , Endocitose , Deleção de Genes , Genes Reporter , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Técnicas de Patch-Clamp , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido
19.
Am J Physiol Lung Cell Mol Physiol ; 298(1): L45-56, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897741

RESUMO

Distal lung development occurs through coordinated induction of myofibroblasts, epithelial cells, and capillaries. Lunatic Fringe (Lfng) is a beta(1-3) N-acetylglucosamine transferase that modifies Notch receptors to facilitate their activation by Delta-like (Dll1/4) ligands. Lfng is expressed in the distal lung during saccular development, and deletion of this gene impairs myofibroblast differentiation and alveogenesis in this context. A similar defect was observed in Notch2(beta-geo/+)Notch3(beta-geo/beta-geo) compound mutant mice but not in Notch2(beta-geo/+) or Notch3(beta-geo/beta-geo) single mutants. Finally, to directly test for the role of Notch signaling in myofibroblast differentiation in vivo, we used ROSA26-rtTA(/+);tetO-CRE(/+);RBPJkappa(flox/flox) inducible mutant mice to show that disruption of canonical Notch signaling during late embryonic development prevents induction of smooth muscle actin in mesenchymal cells of the distal lung. In sum, these results demonstrate that Lfng functions to enhance Notch signaling in myofibroblast precursor cells and thereby to coordinate differentiation and mobilization of myofibroblasts required for alveolar septation.


Assuntos
Glicosiltransferases/metabolismo , Organogênese , Alvéolos Pulmonares/embriologia , Receptores Notch/metabolismo , Transdução de Sinais , Alelos , Animais , Diferenciação Celular , Colágeno/metabolismo , Elastina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Genoma/genética , Imuno-Histoquímica , Ligantes , Camundongos , Camundongos Mutantes , Mutação/genética , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Alvéolos Pulmonares/anormalidades , Alvéolos Pulmonares/patologia , Células-Tronco/metabolismo
20.
Life Sci Alliance ; 3(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32371554

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that remains incurable because of late diagnosis, which renders any therapeutic intervention challenging. Most PDAC patients develop de novo diabetes, which exacerbates their morbidity and mortality. How PDAC triggers diabetes is still unfolding. Using a mouse model of KrasG12D-driven PDAC, which faithfully recapitulates the progression of the human disease, we observed a massive and selective depletion of ß-cells, occurring very early at the stages of preneoplastic lesions. Mechanistically, we found that increased TGF beta (TGF-ß) signaling during PDAC progression caused erosion of ß-cell mass through apoptosis. Suppressing TGF-ß signaling, either pharmacologically through TGF-ß immunoneutralization or genetically through deletion of Smad4 or TGF-ß type II receptor (TßRII), afforded substantial protection against PDAC-driven ß-cell depletion. From a translational perspective, both activation of TGF-ß signaling and depletion of ß-cells frequently occur in human PDAC, providing a mechanistic explanation for the pathogenesis of diabetes in PDAC patients, and further implicating new-onset diabetes as a potential early prognostic marker for PDAC.


Assuntos
Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/metabolismo , Diabetes Mellitus/etiologia , Células Secretoras de Insulina/metabolismo , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prognóstico , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Proteína Smad4/genética , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA