Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(7): 1235-1247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517048

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor type with worse clinical outcome due to the hallmarks of strong invasiveness, high rate of recurrence, and therapeutic resistance to temozolomide (TMZ), the first-line drug for GBM, representing a major challenge for successful GBM therapeutics. Understanding the underlying mechanisms that drive GBM progression will shed novel insight into therapeutic strategies. Receptor-type tyrosine-protein phosphatase S (PTPRS) is a frequently mutated gene in human cancers, including GBM. Its role in GBM has not yet been clarified. Here, inactivating PTPRS mutation or deficiency was frequently found in GBM, and deficiency in PTPRS significantly induced defects in the G2M checkpoint and limited GBM cells proliferation, leading to potent resistance to TMZ treatment in vitro and in vivo. Surprisingly, loss of PTPRS triggered an unexpected mesenchymal phenotype that markedly enhances the migratory capabilities of GBM cells through upregulating numerous matrix metalloproteinases via MAPK-MEK-ERK signaling. Therefore, this work provides a therapeutic window for precisely excluding PTPRS-mutated patients who do not respond to TMZ.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Movimento Celular/efeitos dos fármacos , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
2.
Mol Divers ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012564

RESUMO

Prolactinoma was the most common functional pituitary neuroendocrine tumor tissue type, which was caused by excessive proliferation of pituitary prolactin (PRL) cells. Drug therapy of dopamine receptor agonists was generally considered as the prior treatment for prolactinoma patients. However, there were still prolactinoma patients who were resistant to dopamine agonists. Studies have been reported that paeoniflorin can inhibit the secretion of PRL in prolactinoma cells lacking dopamine D2 receptor (D2R) expression, and paeoniflorin can be metabolized into albiflorin by intestinal flora in rats. The effect of albiflorin on prolactinoma has not been reported yet. In this study, network pharmacology was used to analyze the mechanism of paeoniflorin and its metabolite albiflorin as multi-target therapy for prolactinoma, and the experimental verification was carried out. In order to clarify the complex relationship among paeoniflorin, albiflorin and prolactinoma, we constructed a component-target-disease network, and further constructed interaction network, MMP9, EGFR, FGF2, FGFR1 and LGALS3 were screened as the core targets. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that paeoniflorin and albiflorin may be involved in various pathways in the treatment of prolactinoma, included relaxin signaling pathway and PI3K-Akt signaling pathway. Molecular docking analysis showed that paeoniflorin and albiflorin had good binding activity with MMP9. Western blotting results showed that paeoniflorin and albiflorin could significantly reduce the expression of MMP9, and ELISA results showed that paeoniflorin and albiflorin could significantly reduce the concentration of PRL in GH3 cells, and the reduce degree of albiflorin was stronger than paeoniflorin at 50 µM, which indicated that albiflorin might be a potential drug to treat prolactinoma, which can regulate prolactinoma through MMP9 and reduce the concentration of PRL. Our study provided a new therapeutic strategy for prolactinoma.

3.
Med Sci Monit ; 30: e946584, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39290194

RESUMO

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Yihua Zhang, Yang Tan, Hao Wang, Minhui Xu, Lunshan Xu. Long Non-Coding RNA Plasmacytoma Variant Translocation 1 (PVT1) Enhances Proliferation, Migration, and Epithelial-Mesenchymal Transition (EMT) of Pituitary Adenoma Cells by Activating ß-Catenin, c-Myc, and Cyclin D1 Expression. Med Sci Monit, 2019; 25: 7652-7659. DOI: 10.12659/MSM.917110.


Assuntos
Movimento Celular , Proliferação de Células , Ciclina D1 , Transição Epitelial-Mesenquimal , Neoplasias Hipofisárias , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , beta Catenina , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Transição Epitelial-Mesenquimal/genética , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ciclina D1/metabolismo , Ciclina D1/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Regulação Neoplásica da Expressão Gênica
4.
Cell Biol Int ; 46(11): 1927-1936, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971755

RESUMO

Microglia is the major cellular component of glioma mass that promotes glioma growth, invasion, and chemoresistance by releasing inflammatory factors. Sterile alpha and HEAT/Armadillo motif (SARM), a member of the Toll-interleukin-1 receptor (TIR) domain-containing adaptor family, is primarily expressed in the central nervous system. However, the role of SARM in glioma is still undefined. In the present work, we examined the function of SARM in microglial polarization and glioma progression. Our results showed that forced the expression of SARM in GL261 glioma cells inhibited tumor growth, and reduced interleukin (IL)-6 secretion in conditioned media. Silencing of SARM in microglia cells inhibited IL-4-induced M2 polarization, enhanced lipopolysaccharide -induced M1 microglial polarization. Furthermore, overexpression of SARM increased the migration of microglia cells upon TGFß stimulation. These data suggested that SARM is involved in neuro-inflammation and microglia activation. In summary, this study provides novel insight into the mechanisms of microglial polarization.


Assuntos
Glioma , Microglia , Meios de Cultivo Condicionados , Glioma/metabolismo , Humanos , Interleucina-4/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Receptores de Interleucina-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Cell Commun Signal ; 18(1): 22, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046730

RESUMO

BACKGROUND: Glioblastoma and Alzheimer's disease (AD) are the most common and devastating diseases in the central nervous system. The dysfunction of Presenilin1 is the main reason for AD pathogenesis. However, the molecular function of Presenilin1 and its relative mechanism in glioblastoma remain unclear. METHODS: Expression of presenilin1 in glioma was determined by IHC. CCK-8, colony formation, Flow cytometry, Edu staining were utilized to evaluate functions of presenilin1 on glioblastoma proliferation. The mechanism of above process was assessed by Western blotting and cell immunofluorescence. Mouse transplanting glioblastoma model and micro-MRI detection were used to verified presenilin1 function in vivo. RESULTS: In this study, we found that all grades of glioma maintained relatively low Presenilin1 expression and that the expression of Presenilin1 in high-grade glioma was significantly lower than that in low-grade glioma. Moreover, the Presenilin1 level had a positive correlation with glioma and glioblastoma patient prognosis. Next, we determined that Presenilin1 inhibited the growth and proliferation of glioblastoma cells by downregulating CDK6, C-myc and Cyclin D1 to arrest the cell cycle at the G1/S phase. Mechanistically, Presenilin1 promoted the direct phosphorylation of ß-catenin at the 45 site and indirect phosphorylation at the 33/37/41 site, then decreased the stabilized part of ß-catenin and hindered its translocation from the cytoplasm to the nucleus. Furthermore, we found that Presenilin1 downregulation clearly accelerated the growth of subcutaneous glioblastoma, and Presenilin1 overexpression significantly repressed the subcutaneous and intracranial transplantation of glioblastoma by hindering ß-catenin-dependent cell proliferation. CONCLUSION: Our data implicate the antiproliferative effect of Presenilin1 in glioblastoma by suppressing Wnt/ß-catenin signaling, which may provide a novel therapeutic agent for glioblastoma. Video Abstract.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Presenilina-1/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Regulação para Baixo , Fase G1 , Humanos , Camundongos Nus , Fosforilação , Prognóstico , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fase S , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
6.
Neurochem Res ; 44(7): 1690-1702, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004260

RESUMO

Trigeminal neuralgia (TN) is a type of chronic neuropathic pain that is caused by peripheral nerve lesions that result from various conditions, including the compression of vessels, tumors and viral infections. MicroRNAs (miRs) are increasingly recognized as potential regulators of neuropathic pain. Previous evidence has demonstrated that miR-195 is involved in neuropathic pain, but the mechanism remains unclear. To investigate the pathophysiological role of miR-195 and Shh signaling in TN, persistent facial pain was induced by infraorbital nerve chronic constriction injury (CCI-IoN), and facial pain responses were evaluated by Von Frey hairs. qPCR and Western blotting were used to determine the relative expression of miR-195 and Patched1, the major receptor of the Sonic Hedgehog (Shh) signaling pathway, in the caudal brain stem at distinct time points after CCI-IoN. Here, we found that the expression of miR-195 was increased in a rat model of CCI-IoN. In contrast, the expression of Patched1 decreased significantly. Luciferase assays confirmed the binding of miR-195 to Patched1. In addition, the overexpression of miR-195 by an intracerebroventricular (i.c.v) administration of LV-miR-195 aggravated facial pain development, and this was reversed by upregulating the expression of Patched1. These results suggest that miR-195 is involved in the development of TN by targeting Patched1 in the Shh signaling pathway, thus regulating extracellular glutamate.


Assuntos
Proteínas Hedgehog/metabolismo , MicroRNAs/fisiologia , Receptor Patched-1/metabolismo , Transdução de Sinais/fisiologia , Neuralgia do Trigêmeo/fisiopatologia , Animais , Regulação para Baixo , Ácido Glutâmico/líquido cefalorraquidiano , Ácido Glutâmico/metabolismo , Infusões Intraventriculares , Lentivirus/genética , Masculino , MicroRNAs/administração & dosagem , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Receptor Patched-1/genética , Ratos Sprague-Dawley
7.
BMC Neurol ; 19(1): 217, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481028

RESUMO

BACKGROUND: Microvascular decompression (MVD) is a type of neurosurgery used to treat trigeminal neuralgia (TN) caused by the vertebrobasilar contact/compression. The surgery is not risk-free, however; it may cause recurrent facial pain or other side-effects. The objective of this study was to assess the long-term pain relief and the complications of MVD surgery for the vertebrobasilar compression treatment. METHODS: Twenty-three patients with TN compressed by the vertebra-basilar artery (VBA) were treated with MVD. Teflon felt was placed between the brain stem and the offending artery to mobilize the artery towards the skull base and the clivus. The Barrow Neurological Institute (BNI) Pain Intensity Scale score was used to assess pre- and post-surgical pains. RESULTS: Of 23 patients with pre-operative BNI IV to V, 19 patients (83%) were pain-free after surgery. Four patients experienced transient partial pain relief with BNI II-III, and 3 of them (13%) were completely pain-free within 3 months. The success rate was 96%. Three patients (13%) had pain recurrences, and one received a second MVD surgery for pain relief during the period of follow-up. Four patients suffered from TN hypesthesia, and only 2 patients (8.6%) had permanent facial hypesthesia, while one patient (4.3%) developed a gradual hearing loss after surgery. CONCLUSIONS: While our success rate of immediate pain relief after surgery was comparable with some reports, the percentage of patients who had pain recurrences was lower, and cases who had permanent facial hypesthesia or developed a gradual hearing loss were fewer after MVD surgery. Our rate of transient complications was higher, and the postoperative pain relief seemed unusually delayed. Our study indicates that MVD is an effective, reliable, and safe neurosurgery for treatment of TN compressed by the VBA albeit our small sample size. Failure of treatment and recurrence of the disease as well as complications could be minimized by preventing displacement of the Teflon implant and extraneous Teflon touching the trigeminal nerves.


Assuntos
Dor Facial/etiologia , Hipestesia/etiologia , Cirurgia de Descompressão Microvascular/métodos , Neuralgia do Trigêmeo/cirurgia , Idoso , Artéria Basilar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Recidiva , Resultado do Tratamento , Nervo Trigêmeo
8.
Future Oncol ; 15(32): 3723-3738, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31650850

RESUMO

Aim: Apocynum venetum polyphenol (AVP) was used in in vitro glioma cells culture to prove the growth inhibitory effect of AVP on human U87 glioma cells via NF-κB pathway. Materials & methods: The MTT assay, DAPI morphology, quantitative PCR and western blot experiments were used for determination in vitro. Results & conclusion: AVP can also induce U87 cancer cells apoptosis illustrated by DAPI morphology. AVP could enhance the mRNA and protein expression of IκB-α, TNF-α, TRAIL, caspase-3 and caspase-9 in U87 cancer cells and reduce those of NF-κBp65, cIAP-1, cIAP-2, TGF-ß2, CyclinD1, VEGF and IL-8. After ammonium pyrrolidine dithiocarbamate (PDTC) treatment, the NF-κBp65 expression was reduced in U87 cells, and AVP could raise these effects. The results of HPLC indicate that AVP mainly contains six constituents. The growth inhibitory effects of AVP on U87 glioma cells are predominantly from these natural active constituents.


Assuntos
Antineoplásicos/farmacologia , Apocynum/química , Apoptose/efeitos dos fármacos , Glioma/patologia , Polifenóis/farmacologia , Fator de Transcrição RelA/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/metabolismo , Humanos , Polifenóis/química , Polifenóis/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética
9.
Med Sci Monit ; 25: 7652-7659, 2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604907

RESUMO

BACKGROUND As a kind of benign tumor, pituitary adenomas have attracted increasing attention from researchers. The plasmacytoma variant translocation 1 (PVT1) is a molecule in the lncRNA family protein that has been proven to play critical roles in many cancers; however, no study has explored the special biological roles of PVT1 in pituitary adenoma. MATERIAL AND METHODS The qRT-PCR assay was conducted to evaluate PVT1 expressions in various cell lines and tissues. Loss of function assays were carried out to detect the influence of silenced PVT1 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) of pituitary adenoma cells. Western blotting was used to identify correlation between ß-catenin and PVT1. RESULTS The PVT1 expressions were significantly enhanced in tissues of pituitary adenoma and cancer cells. Cell migration and proliferation were inhibited when the PVT1 gene was knocked down. Knockdown of PVT1 repressed the migration and EMT of pituitary adenoma cells. The PVT1 downregulation obviously blocked Wnt/ß-catenin signaling pathway activity. PVT1 aggravated progression of pituitary adenoma through initiating the Wnt/ß-catenin signaling pathway. CONCLUSIONS PVT1 exerts an oncogenic role through activating Wnt/ß-catenin signaling in pituitary adenoma cells. The present results may provide a potential therapeutic target or approach for treating pituitary adenomas.


Assuntos
Adenoma/genética , Movimento Celular/genética , Ciclina D1/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias Hipofisárias/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , Adenoma/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hipofisárias/patologia , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Via de Sinalização Wnt
11.
Int J Neurosci ; 126(1): 1-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26000816

RESUMO

The control of malignant glioma cell cycle by microRNAs (miRNAs) is well established. The deregulation of miRNAs in glioma may contribute to tumor proliferation by directly targeting the critical cell-cycle regulators. Tumor suppressive miRNAs inhibit cell cycle through repressing the expression of positive cell-cycle regulators. However, oncogenic miRNAs promote the cell-cycle progression by targeting cell-cycle negative regulators. Recent studies have identified that transcription factors had involved in the expression of miRNAs. Transcription factors and miRNAs are implicated in regulatory network of glioma cell cycle, the deregulation of these transcription factors might be a cause of the deregulation of miRNAs. Abnormal versions of miRNAs have been implicated in the cell cycle of glioma. Based on those, miRNAs are excellent biomarker candidates and potential targets for therapeutic intervention in glioma.


Assuntos
Ciclo Celular/genética , Neoplasias do Sistema Nervoso Central/genética , Glioma/genética , MicroRNAs/genética , RNA Neoplásico/genética , Biomarcadores Tumorais , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Neoplasias do Sistema Nervoso Central/patologia , Replicação do DNA , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , Fase G1/genética , Glioma/patologia , Humanos , NF-kappa B/fisiologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fase S/genética , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/genética
12.
Mol Cancer ; 14: 21, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644759

RESUMO

BACKGROUND: The poor prognosis and minimally successful treatments of malignant glioma indicate a challenge to identify new therapeutic targets which impact glioma progression. Neurotensin (NTS) and its high affinity receptor (NTSR1) overexpression induces neoplastic growth and predicts the poor prognosis in various malignancies. Whether NTS can promote the glioma progression and its prognostic significance for glioma patients remains unclear. METHODS: NTS precursor (ProNTS), NTS and NTSR1 expression levels in glioma were detected by immunobloting Elisa and immunohistochemistry assay. The prognostic analysis was conducted from internet by R2 microarray platform. Glioma cell proliferation was evaluated by CCK8 and BrdU incorporation assay. Wound healing model and Matrigel transwell assay were utilized to test cellular migration and invasion. The orthotopic glioma implantations were established to analyze the role of NTS and NTSR1 in glioma progression in vivo. RESULTS: Positive correlations were shown between the expression levels of NTS and NTSR1 with the pathological grade of gliomas. The high expression levels of NTS and NTSR1 indicate a worse prognosis in glioma patients. The proliferation and invasiveness of glioma cells could be enhanced by NTS stimulation and impaired by the inhibition of NTSR1. NTS stimulated Erk1/2 phosphorylation in glioma cells, which could be reversed by SR48692 or NTSR1-siRNA. In vivo experiments showed that SR48692 significantly prolonged the survival length of glioma-bearing mice and inhibited glioma cell invasiveness. CONCLUSION: NTS promotes the proliferation and invasion of glioma via the activation of NTSR1. High expression levels of NTS and NTSR1 predict a poor prognosis in glioma patients.


Assuntos
Movimento Celular/genética , Glioma/genética , Glioma/patologia , Invasividade Neoplásica/genética , Neurotensina/genética , Receptores de Neurotensina/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/tratamento farmacológico , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Prognóstico , Precursores de Proteínas/genética , Pirazóis/farmacologia , Quinolinas/farmacologia
13.
Front Pharmacol ; 15: 1403864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295931

RESUMO

Pituitary neuroendocrine tumors (PitNETs) are a special class of tumors of the central nervous system that are closely related to metabolism, endocrine functions, and immunity. In this study, network pharmacology was used to explore the metabolites and pharmacological mechanisms of PitNET regulation by gut microbiota. The metabolites of the gut microbiota were obtained from the gutMGene database, and the targets related to the metabolites and PitNETs were determined using public databases. A total of 208 metabolites were mined from the gutMGene database; 1,192 metabolite targets were screened from the similarity ensemble approach database; and 2,303 PitNET-related targets were screened from the GeneCards database. From these, 392 overlapping targets were screened between the metabolite and PitNET-related targets, and the intersection between these overlapping and gutMGene database targets (223 targets) were obtained as the core targets (43 targets). Using the protein-protein interaction (PPI) network analysis, Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway and metabolic pathway analysis, CXCL8 was obtained as a hub target, tryptophan metabolism was found to be a key metabolic pathway, and IL-17 signaling was screened as the key KEGG signaling pathway. In addition, molecular docking analysis of the active metabolites and target were performed, and the results showed that baicalin, baicalein, and compound K had good binding activities with CXCL8. We also describe the potential mechanisms for treating PitNETs using the information on the microbiota (Bifidobacterium adolescentis), signaling pathway (IL-17), target (CXCL8), and metabolites (baicalin, baicalein, and compound K); we expect that these will provide a scientific basis for further study.

14.
Neural Regen Res ; 19(5): 1072-1077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862210

RESUMO

MIcroglia/macrophage-mediated erythrophagocytosis plays a crucial role in hematoma clearance after intracerebral hemorrhage. Dynamic cytoskeletal changes accompany phagocytosis. However, whether and how these changes are associated with microglia/macrophage-mediated erythrophagocytosis remain unclear. In this study, we investigated the function of acetylated α-tubulin, a stabilized microtubule form, in microglia/macrophage erythrophagocytosis after intracerebral hemorrhage both in vitro and in vivo. We first assessed the function of acetylated α-tubulin in erythrophagocytosis using primary DiO GFP-labeled red blood cells co-cultured with the BV2 microglia or RAW264.7 macrophage cell lines. Acetylated α-tubulin expression was significantly decreased in BV2 and RAW264.7 cells during erythrophagocytosis. Moreover, silencing α-tubulin acetyltransferase 1 (ATAT1), a newly discovered α-tubulin acetyltransferase, decreased Ac-α-tub levels and enhanced the erythrophagocytosis by BV2 and RAW264.7 cells. Consistent with these findings, in ATAT1-/- mice, we observed increased ionized calcium binding adapter molecule 1 (Iba1) and Perls-positive microglia/macrophage phagocytes of red blood cells in peri-hematoma and reduced hematoma volume in mice with intracerebral hemorrhage. Additionally, knocking out ATAT1 alleviated neuronal apoptosis and pro-inflammatory cytokines and increased anti-inflammatory cytokines around the hematoma, ultimately improving neurological recovery of mice after intracerebral hemorrhage. These findings suggest that ATAT1 deficiency accelerates erythrophagocytosis by microglia/macrophages and hematoma absorption after intracerebral hemorrhage. These results provide novel insights into the mechanisms of hematoma clearance and suggest ATAT1 as a potential target for the treatment of intracerebral hemorrhage.

15.
Exp Neurol ; 374: 114691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224942

RESUMO

Blood-brain barrier (BBB) impairment and glutamate release are two pathophysiological features of traumatic brain injury (TBI), contributing to secondary brain damage and neuroinflammation. However, our knowledge of BBB integrity damage and dysfunction are still limited due to the diverse and fluctuating expression of glutamate receptors after trauma. Here, we confirmed the downregulation of metabotropic glutamate receptor 5 (mGluR5) on microvascular endothelial cell within the acute phase of TBI, and the recovered mGluR5 levels on BBB was positively associated with blood perfusion and neurological recovery. In whole body mGluR5-knockout mice, BBB dysfunction and neurological deficiency were exacerbated after TBI compared with wild type mice. In terms of mechanism, the amino acid sequence 201-259 of cytoskeletal protein Alpha-actinin-1 (ACTN1) interacted with mGluR5, facilitating mGluR5 translocation from cytoplasmic compartment to plasma membrane in endothelial cells. Activation of plasma membrane mGluR5 triggers the PLC/PKCµ/c-Jun signaling pathway, leading to increased expression of the tight junction-actin cytoskeleton connecting protein zonula occludens-1 (ZO-1). Our findings uncover a novel mechanism mediated by membrane and cytoplasmic mGluR5 in endothelial cell integrity maintenance and repair, providing the potential therapeutic target for TBI treatment targeting at mGluR5 and mGluR5/ACTN1 complex in BBB.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout , Receptor de Glutamato Metabotrópico 5/metabolismo
16.
Biomed Mater ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312942

RESUMO

Stem cell derived small extracellular vesicles (sEVs) have emerged as promising nanomaterials for the repair of bone defects. However, low retention of sEVs affects their therapeutic effects. Clinically used natural substitute Bio-Oss bone powder lack high compactibility and efficient osteo-inductivity that limit its clinical application in repairing large bone defects. In this study, a poly ethylene glycol/hyaluronic acid (PEG/HA) hydrogel was used to stabilize Bio-Oss and incorporate rat bone marrow stem cell-derived sEVs (rBMSCs-sEVs) to engineer a PEG/HA-Bio-Oss (PEG/HA-Bio) composite scaffold. Encapsulation and sustained release of sEVs in hydrogel scaffold can enhance the retention of sEVs in targeted area, achieving long-lasting repair effect. Meanwhile, synergistic administration of sEVs and Bio-Oss in cranial defect can improve therapeutic effects. The PEG/HA-Bio composite scaffold showed good mechanical properties and biocompatibility, supporting the growth of rBMSCs. Furthermore, sEVs enhanced in vitro cell proliferation and osteogenic differentiation of rBMSCs. Implantation of sEVs/PEG/HA-Bio in rat cranial defect model promoted in vivo bone regeneration, suggesting the great potential of sEVs/PEG/HA-Bio composite scaffold for bone repair and regeneration. This will hopefully provide a strategy for combining hydrogel composite scaffold systems and stem cell-derived sEVs in the field of applied tissue engineering repair. .

17.
Int J Med Sci ; 10(4): 399-407, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23471193

RESUMO

OBJECTIVE: To investigate the relationship between hypoxia and in vitro "stemness" of cancer stem cells (CSCs). METHODS: U87 cells, U251 cells and primary glioma cells (n=3) experienced hypoxia. Transmission electron microscopy was done to detect the ultrastructure of these cancer cells; MTT assay to detect the cell growth; flow cytometry to detect cell cycle and CD133 expression; Transwell chamber assay was carried out to detect the cell migration; colony-forming assay to detect the colony-forming efficiency; real-time quantitative PCR and Western blot were carried out to detect the mRNA and protein expression of markers of stem cells and their differentiation, respectively. RESULTS: Hypoxia maintained the undifferentiated state of primary glioma cells, slowed down the growth of glioma cells which were in a relatively quiescent stage, increased the colony forming efficiency and migration of glioma cells, and elevated the expression of markers of stem cells, but the expression of markers for stem cell differentiation was reduced after hypoxia treatment. CONCLUSION: Hypoxia may induce the "dedifferentiation" of differentiated glioma cells which then acquire the stemness.


Assuntos
Neoplasias Encefálicas/patologia , Desdiferenciação Celular/genética , Hipóxia Celular/genética , Células-Tronco Neoplásicas/citologia , Oxigênio/farmacologia , Antígeno AC133 , Antígenos CD , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Glicoproteínas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Técnicas In Vitro , Invasividade Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Peptídeos
18.
Front Cell Infect Microbiol ; 13: 1296491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274731

RESUMO

Streptomyces, the largest genus in the Streptomycetaceae family and a prolific producer of antibacterial drugs, is a saprophytic soil organism that rarely causes invasive infections. Here we report a case of necrotic pneumonia caused by Streptomyces albireticuli in a 75-year-old man who presented with progressive chest tightness and dyspnea. Streptomyces albireticuli was isolated from his bronchoalveolar lavage fluid and identified through whole-genome sequencing (WGS) and phylogenetic analysis. The patient responded satisfactorily to clarithromycin therapy. The findings of this study may enhance our vigilance in identifying visceral infections caused by Streptomyces.


Assuntos
Cistos , Pneumopatias , Pneumonia , Streptomyces , Masculino , Humanos , Idoso , Filogenia , Streptomyces/genética , Pulmão
19.
Front Neurol ; 14: 1247549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313405

RESUMO

Background: Endovascular or surgical treatment of wide-neck, large basilar apex aneurysms is challenging. We present a novel concept for the treatment of complex basilar apex aneurysms using flow-diverter devices combined with the flow-T stenting-assisted coiling technique. Assess the efficacy and safety profile of the technique in this complex aneurysm. Case description: A patient with multiple unruptured intracranial aneurysms underwent staged treatment. A large basilar apex aneurysm was treated with a flow-diverter stent combined with a flow-T stenting-assisted coiling technique in the first stage, and a giant supraclinoid aneurysm was treated with a flow-diverter stent applied in the second stage. Clinical presentations, technical details, intra- and perioperative complications, and clinical and angiographic outcomes were recorded, with a 9-month follow-up. Results: The patient achieved full neurologic recovery postoperatively. Cerebral angiography performed postoperatively showed revascularization, good laminar flow, and no in-stent or adjacent stenosis. Conclusion: Flow-diverter stents combined with flow-T stenting-assisted coiling for the treatment of giant basilar apex aneurysms is a feasible technique with efficacy demonstrated at a 9-month follow-up. Staged endovascular treatment of multiple intracranial aneurysms may be a safe and viable option.

20.
J Biol Chem ; 286(42): 36694-9, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21896488

RESUMO

Tumor tolerance plays a critical role in tumor growth and escape from immune surveillance. The mechanism of tumor tolerance development is not fully understood. Regulatory T cells (Tregs) play a critical role in tumor tolerance. TIM4 (T cell immunoglobulin- and mucin domain-containing molecule-4) is involved in immune regulation. We investigated the role of TIM4 in the induction of Tregs in tumors. Surgically removed glioma tissue and peripheral blood samples were obtained from 25 glioma patients. Immune cells were isolated from the tissue and blood samples. Confocal microscopy was employed to detect macrophages phagocytosing apoptotic T cells. The generation of tumor-specific Tregs and the immune suppression function of Tregs were observed in cell culture models. High levels of TIM4 were detected in glioma-derived macrophages. Phosphatidylserine (PS) was detected in glioma-derived T cells; naïve T cells expressed low levels of PS that could be up-regulated by hypoxia. Glioma-derived macrophages phagocytosed PS-expressing T cells, gaining the tolerogenic properties, which could induce tumor-specific Tregs; the latter could suppress tumor-specific CD8(+) T cells. We conclude that macrophage-derived TIM4 plays an important role in the induction of Tregs in gliomas, which may play an important role in tumor tolerance.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Glioma/imunologia , Tolerância Imunológica , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Linfócitos T Reguladores/imunologia , Hipóxia Celular/imunologia , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/biossíntese , Fagocitose/imunologia , Fosfatidilserinas/biossíntese , Fosfatidilserinas/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA