Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 102(1): 1-13, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903419

RESUMO

Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.


Assuntos
Técnicas de Reprogramação Celular , Qualidade de Vida , Humanos , Técnicas de Reprogramação Celular/métodos , Miócitos Cardíacos , Reprogramação Celular , Fatores de Transcrição/genética , Medicina Regenerativa/métodos , Fibroblastos
2.
Mol Ther ; 30(1): 54-74, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678511

RESUMO

Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infarto do Miocárdio , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos/metabolismo , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo
3.
Nanotechnology ; 33(24)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35235919

RESUMO

In this study, we developed a flexible and transparent silver/polystyrene/polydimethylsiloxane (Ag/PS/PDMS) substrate with both high density of hot spots and satisfactory uniformity using a cost-effective approach. Via template-guided self-assembly, PS beads were arranged regularly in nanobowls of a square array on PDMS, whose surface structure was transferred from a commercial complementary metal oxide semiconductor chip. Roughness was introduced onto the PS bead surface by nitrogen plasma treatment, followed by sputtering of Ag which generated many hot spots. Differential roughness on the PS bead surface greatly influenced the morphology of the Ag/PS/PDMS substrate. A meat-ball like surface structure was formed with a plasma etching time of 5 min, whose growth mechanism was proposed based on the scanning electron microscope analysis. The high sensitivity and desirable uniformity of the meat-ball like Ag/PS/PDMS substrate were demonstrated by using crystal violet as a Raman reporter, exhibiting an enhancement factor of 2.7 × 107and a relative standard deviation of 5.04%. Thiram of a lower concentration than the maximum residue limit on the cucumber surface could easily be detectedin situby the proposed substrate, demonstrating its great potential forin-situfood safety analysis.

4.
Stem Cells ; 34(1): 148-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26390028

RESUMO

Previously, we reported that a novel subpopulation of young mesenchymal stem cells (YMSCs) existed in old bone marrow, which possessed high antiaging properties as well as excellent efficacy for cardiac repair. MicroRNAs (miRNAs) have emerged as key regulators in post-transcriptional gene expression programs, and however, it is unknown whether miRNAs directly control stem cell senescence. Here we present the first evidence that miR-195 overexpressed in old MSCs (OMSCs) induces stem cell senescence deteriorating their regenerative ability by directly deactivating telomerase reverse transcriptase (Tert), and abrogation of miR-195 can reverse stem cell aging. MiRNAs profiling analysis in YMSCs and OMSCs by microarray showed that miR-140, miR-146a/b, and miR-195 were significantly upregulated in OMSCs, which led us to hypothesize that these are age-induced miRNAs involved in stem cell senescence. Of these miRNAs, we found miR-195 directly targeted 3'-untranslated region of Tert gene by computational target prediction analysis and luciferase assay, and knockdown of miR-195 significantly increased Tert expression in OMSCs. Strikingly, miR-195 inhibition significantly induced telomere relengthening in OMSCs along with reduced expression of senescence-associated ß-galactosidase. Moreover, silencing miR-195 in OMSCs by transfection of miR-195 inhibitor significantly restored antiaging factors expression including Tert and Sirt1 as well as phosphorylation of Akt and FOXO1. Notably, abrogation of miR-195 markedly restored proliferative abilities in OMSCs. Transplantation of OMSCs with knocked out miR-195 reduced infarction size and improved LV function. In conclusion, rejuvenation of aged stem cells by miR-195 inhibition would be a promising autologous therapeutic strategy for cardiac repair in the elderly patients.


Assuntos
Envelhecimento/genética , Senescência Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Telomerase/metabolismo , Animais , Sequência de Bases , Biomarcadores/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Resultado do Tratamento , Regulação para Cima/genética , Cicatrização
5.
Cell Biochem Funct ; 35(2): 113-123, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28233339

RESUMO

It has been reported that CXCR4-overexpressing mesenchymal stem cells (MSCCX4 ) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4-derived paracrine cardio-protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4 , and CXCR4 gene-specific siRNA-transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs-conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation-regulating genes were assessed by real-time polymerase chain reaction (RT-PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium-treated group than control group, while this proproliferative effect was reduced in CXCR4 gene-specific siRNA-transduced MSC-treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor-ß2 was observed in hypoxia-exposed MSCCX4 . In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Comunicação Parácrina/genética , Receptores CXCR4/genética , Animais , Animais Recém-Nascidos , Hipóxia Celular , Meios de Cultivo Condicionados/farmacologia , Ciclina A2/genética , Ciclina A2/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Transfecção , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular
6.
Exp Dermatol ; 25(1): 32-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26264384

RESUMO

Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) has been reported to induce keratinocyte apoptosis in vitro by engaging its sole receptor of fibroblast growth factor-inducible 14 (Fn14). In this study, we explored the role of TWEAK/Fn14 pathway in the growth of psoriatic keratinocytes that is, however, characterized by suppressed apoptotic cell death. Skin tissues from the patients with psoriasis or healthy donors were determined for TWEAK and Fn14 expression, and primary keratinocytes were evaluated under the stimulation of psoriatic proinflammatory cytokines or plus TWEAK. The results showed that both TWEAK and Fn14 were highly expressed in psoriatic skins. Moreover, the stimulation of psoriatic cytokines enhanced Fn14 expression by keratinocytes in vitro, which expressed TNF receptor 2 predominantly and proliferated increasingly with the addition of TWEAK. Furthermore, TWEAK stimulation enhanced the synthesis of survivin, inhibitor of apoptosis protein 2 and cellular FLICE-inhibitory protein in lesional keratinocytes. Therefore, TWEAK/Fn14 interaction prefers to enhance proliferation but not apoptosis of keratinocytes under psoriatic inflammation. The activation of nuclear factor-κB signalling-dependent anti-apoptotic proteins and biased expression of TNF receptors may be responsible for such a novel principle in keratinocytes under psoriatic inflammation.


Assuntos
Inflamação/metabolismo , Queratinócitos/citologia , Psoríase/imunologia , Psoríase/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Apoptose , Proliferação de Células , Citocina TWEAK , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Inflamação/patologia , Proteínas Inibidoras de Apoptose/metabolismo , Queratinócitos/metabolismo , Ligantes , NF-kappa B/metabolismo , Psoríase/patologia , Survivina , Receptor de TWEAK
8.
J Cell Mol Med ; 19(8): 1825-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25824297

RESUMO

The chemokine (C-X-C motif) receptor 4 (CXCR4) is expressed on native cardiomyocytes and can modulate isolated cardiomyocyte contractility. This study examines the role of CXCR4 in cardiomyocyte response to ischaemia-reperfusion (I/R) injury. Isolated adult rat ventricular cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to simulate I/R injury. In response to H/R injury, the decrease in CXCR4 expression was associated with dysfunctional energy metabolism indicated by an increased adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio. CXCR4-overexpressing cardiomyocytes were used to determine whether such overexpression (OE) can prevent bio-energetic disruption-associated cell death. CXCR4 OE was performed with adenoviral infection with CXCR4 encoding-gene or non-translated nucleotide sequence (Control). The increased CXCR4 expression was observed in cardiomyocytes post CXCR4-adenovirus transduction and this OE significantly reduced the cardiomyocyte contractility under basal conditions. Although the same extent of H/R-provoked cytosolic calcium overload was measured, the hydrogen peroxide-induced decay of mitochondrial membrane potential was suppressed in CXCR4 OE group compared with control group, and the mitochondrial swelling was significantly attenuated in CXCR4 group, implicating that CXCR4 OE prevents permeability transition pore opening exposure to overload calcium. Interestingly, this CXCR4-induced mitochondrial protective effect is associated with the enhanced signal transducer and activator of transcription 3 (expression in mitochondria. Consequently, in the presence of H/R, mitochondrial dysfunction was mitigated and cardiomyocyte death was decreased to 65% in the CXCR4 OE group as compared with the control group. I/R injury leads to the reduction in CXCR4 in cardiomyocytes associated with the dysfunctional energy metabolism, and CXCR4 OE can alleviate mitochondrial dysfunction to improve cardiomyocyte survival.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptores CXCR4/metabolismo , Adenoviridae/metabolismo , Animais , Cálcio/farmacologia , Cardiotônicos/farmacologia , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
9.
Phys Chem Chem Phys ; 17(30): 19745-50, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26105666

RESUMO

In this work, NH2CH=NH2PbI3 (FAPbI3) was employed for light harvesting in inverted planer perovskite solar cells for the first time. Except for the silver cathode, all layers were solution-processed under or below 140 °C. The effect of the annealing process on device performance was investigated. The FAPbI3 solar cells based on a slowed-down annealing shows superior performance compared to the CH3NH3PbI3 (MAPbI3)-based devices, especially for the short circuit current density. A power conversion efficiency of 13.56% was obtained with high short circuit current density of 21.48 mA cm(-2). This work paves the way for low-temperature fabrication of efficient inverted planer structure FAPbI3 perovskite solar cells.

10.
Phys Chem Chem Phys ; 17(40): 26653-8, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26394092

RESUMO

Perovskite film generally has rough surface morphology due to the voids between the grain domains. Smoothed interface contact between the perovskite layer and the top electrode is critical for planar perovskite solar cells. We reported high efficiency bromine-iodine based perovskite solar cells with a flattening cathode interface by incorporating a solution-processed bathocuproine (sBCP) interfacial layer at the cathode side. Compared with vacuum evaporated bathocuproine (eBCP), sBCP demonstrated an excellent surface modification effect at the cathode side with very smaller charge transfer resistance. Accordingly, a high fill factor exceeding 85% and a power conversion efficiency exceeding 13% in CH3NH3PbI3-xBrx based perovskite solar cells were achieved. The largely improved fill factor was attributed to the smooth film morphology and full surface coverage of perovskite films modified by the solution-processed BCP layer.

11.
Biotechnol Lett ; 36(6): 1245-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24562408

RESUMO

A technique to tailor-make pre-coated, pre-aligned bovine collagen fibrils, derived from neonatal cardiomyocytes, on the surface of a glass slide into a designated pattern is reported. The unwanted collagen-coated area was erased by a collagenase solution and the tailored area was retained by attaching a microfabricated polydimethylsiloxane stamp directly to the collagen-coated surface. Using this technique, collagen patterns with designated orientations and with clear pattern boundaries and defined shapes were fabricated.


Assuntos
Colágeno/metabolismo , Colagenases/metabolismo , Microtecnologia/métodos , Materiais Revestidos Biocompatíveis , Humanos , Recém-Nascido , Miócitos Cardíacos/química
12.
Stem Cell Rev Rep ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713406

RESUMO

Although stem/progenitor cell therapy shows potential for myocardial infarction repair, enhancing the therapeutic efficacy could be achieved through additional genetic modifications. HCLS1-associated protein X-1 (HAX1) has been identified as a versatile modulator responsible for cardio-protective signaling, while its role in regulating stem cell survival and functionality remains unknown. In this study, we investigated whether HAX1 can augment the protective potential of Sca1+ cardiac stromal cells (CSCs) for myocardial injury. The overexpression of HAX1 significantly increased cell proliferation and conferred enhanced resistance to hypoxia-induced cell death in CSCs. Mechanistically, HAX1 can interact with Mst1 (a prominent conductor of Hippo signal transduction) and inhibit its kinase activity for protein phosphorylation. This inhibition led to enhanced nuclear translocation of Yes-associated protein (YAP) and activation of downstream therapeutic-related genes. Notably, HAX1 overexpression significantly increased the pro-angiogenic potential of CSCs, as demonstrated by elevated expression of vascular endothelial growth factors. Importantly, implantation of HAX1-overexpressing CSCs promoted neovascularization, protected against functional deterioration, and ameliorated cardiac fibrosis in ischemic mouse hearts. In conclusion, HAX1 emerges as a valuable and efficient inducer for enhancing the effectiveness of cardiac stem or progenitor cell therapeutics.

13.
Chemistry ; 19(35): 11791-7, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23861257

RESUMO

A novel silicon-based compound, 10-phenyl-2'-(triphenylsilyl)-10H-spiro[acridine-9,9'-fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton-blocking material in blue phosphorescent organic light-emitting diodes (PhOLEDs). Accordingly, blue-emitting devices with iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C(2)']picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll-off. In particular, 44.0 cd A(-1) (41.3 lm W(-1)) at 100 cd m(-2) and 41.9 cd A(-1) (32.9 lm W(-1)) at 1000 cd m(-2) were achieved when SSTF was used as host material; 28.1 lm W(-1) at 100 cd m(-2) and 20.6 lm W(-1) at 1000 cd m(-2) were achieved when SSTF was used as exciton-blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.

14.
Nanotechnology ; 24(35): 355401, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23928751

RESUMO

In this study, we fabricated inverted organic photovoltaic cells with the structure ITO/carbon nanotubes (CNTs)-TiO(X)/P3HT:PCBM/MoO3/Al by spin casting CNTs-TiO(X) nanocomposite (CNTs-TiO(X)) as the electron injection layer onto ITO/glass substrates. The power conversion efficiency (PCE) of the 0.1 wt% single-walled nanotubes (SWNTs)-TiO(X) nanocomposite device was almost doubled compared with the TiO(X) device, but with increasing concentration of the incorporated SWNTs in the TiO(X) film, the performance of the devices appeared to decrease rapidly. Devices with multi-walled NTs in the TiO(X) film have a similar trend. This phenomenon mainly depends on the inherent physical and chemical characteristics of CNTs such as their high surface area, their electron-accepting properties and their excellent carrier mobility. However, with increasing concentration of CNTs, CNTs-TiO(X) current leakage pathways emerged and also a recombination of charges at the interfaces. In addition, there was a significant discovery. The incorporated CNTs were highly conducive to enhancing the degree of crystallinity and the ordered arrangement of the P3HT in the active layers, due to the intermolecular π-π stacking interactions between CNTs and P3HT.

15.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1487-1500, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36757484

RESUMO

Viaminate, a retinoic acid derivative developed in China, has been clinically used for acne treatment to regulate and control keratinocyte cell differentiation and proliferation, inhibit keratinization, reduce sebum secretion, and regulate immune and anti-inflammatory functions; however, its potential molecular mechanism has not yet been elucidated. Therefore, we induced ear acne in rats using Propionibacterium acnes and sebum application. Symptoms of ear redness, epidermal thickening, inflammatory reaction, keratin overproduction, subcutaneous oil, and triglyceride (TG) accumulation improved significantly in acne model rats treated with viaminate for 30 days. Transcriptome analysis of rat skin tissues suggested that viaminate had significant regulatory effects on fatty acid metabolism and cellular keratinization pathways. Molecular target prediction suggested that toll-like receptor 2 (TLR2) may be a key target of viaminate's therapeutic mechanism. Western blotting results confirmed that viaminate inhibited the TLR2 and its downstream pathways, nuclear factor-kappa B (NF-κB) [NF-κB inhibitor alpha (IκBα)/NF-κB-p65] and mitogen-activated protein kinases (MAPKs) [MAPK p38/c-Jun N-terminal kinase (JNK)/extracellular regulated kinase 1/2 (ERK1/2)] in acne vulgaris rats. In vitro studies revealed that viaminate treatment attenuated P. acnes proliferation and P. acnes-induced inflammatory response in human keratinocytes and has an inhibitory effect on the activation of NF-κB and MAPKs, while overexpression of TLR2 attenuated these effects. In conclusion, viaminate ameliorates P. acnes-induced acne by inhibiting the proliferation and inflammatory response of keratinocytes, ascribed to the deactivation of the TLR2-mediated NF-κB and MAPK pathways.


Assuntos
Acne Vulgar , NF-kappa B , Ratos , Humanos , Animais , NF-kappa B/metabolismo , Propionibacterium acnes/metabolismo , Receptor 2 Toll-Like , Tretinoína , Acne Vulgar/tratamento farmacológico , Acne Vulgar/metabolismo , Proteínas Quinases Ativadas por Mitógeno
16.
Curr Drug Targets ; 24(13): 1055-1065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37861037

RESUMO

BACKGROUND: Viaminate, a vitamin A acid drug developed in China, has been clinically used in acne treatment to regulate epithelial cell differentiation and proliferation, inhibit keratinization, reduce sebum secretion, and control immunological and anti-inflammatory actions; however, the exact method by which it works is unknown. METHODS: In the present study, acne was induced in the ears of rats using Propionibacterium acnes combined with sebum application. RESULTS: After 30 days of treatment with viaminate, the symptoms of epidermal thickening and keratin overproduction in the ears of rats were significantly improved. Transcriptomic analysis of rat skin tissues suggested that viaminate significantly regulated the biological pathways of cellular keratinization. Gene differential analysis revealed that the S100A8 and S100A9 genes were significantly downregulated after viaminate treatment. The results of qPCR and Western blotting confirmed that viaminate inhibited the expression of S100A8 and S100A9 genes and proteins in rat and HaCat cell acne models, while its downstream pathway MAPK (MAPK p38/JNK/ERK1/2) protein expression levels were suppressed. Additional administration of the S100A8 and S100A9 complex protein significantly reversed the inhibitory effect of viaminate on abnormal proliferation and keratinization levels in acne cell models. CONCLUSION: In summary, viaminate can improve acne by modulating S100A8 and S100A9 to inhibit MAPK pathway activation and inhibit keratinocyte proliferation and keratinization levels.


Assuntos
Acne Vulgar , Neoplasias Cutâneas , Ratos , Animais , Humanos , Sistema de Sinalização das MAP Quinases , Células HaCaT/metabolismo , Propionibacterium acnes/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Calgranulina B/farmacologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Acne Vulgar/tratamento farmacológico , Diferenciação Celular , Proliferação de Células
17.
Sci Rep ; 13(1): 3384, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854764

RESUMO

Vitiligo is the most common depigmenting disorder to which both genetic and environmental factors contribute. The aim of the current work was to evaluate the relationship between polymorphisms of the gene nuclear receptor subfamily 1 Group H member 3 (NR1H3) and the risk of vitiligo and phototherapy effects in the Chinese Han population. Two independent samples were enrolled to form the discovery set (comprised of 1668 nonsegmental vitiligo [NSV] patients and 2542 controls) and the validation set (comprised of 745 NSV patients and 1492 controls). A total of 13 tag single nucleotide polymorphisms (SNPs) were genotyped in the samples from the discovery stage. SNPs that achieved nominal significance were validated in another independent sample set. The serum level of NR1H3 protein was assayed using enzyme-linked immunosorbent assay kits in the validation set. Genetic association analysis was carried out at allelic and genotypic levels. The therapeutic effects of significant SNPs were examined in the validation set. The SNP rs3758672 was significantly associated with NSV. The A allele was correlated with NSV risk and poorer therapeutic effects. The A allele was strongly correlated with the increased level of serum NR1H3 in both controls and patients. In summary, SNP rs3758672 in NR1H3 was significantly associated with both disease susceptibility and individualized therapeutic effects of NSV in study participants with Han Chinese ancestry.


Assuntos
Hipopigmentação , Terapia Ultravioleta , Vitiligo , Humanos , Vitiligo/genética , Vitiligo/radioterapia , Polimorfismo de Nucleotídeo Único , Alelos , Receptores X do Fígado
18.
Front Neurosci ; 17: 1212049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397450

RESUMO

Introduction: The human brain processes shape and texture information separately through different neurons in the visual system. In intelligent computer-aided imaging diagnosis, pre-trained feature extractors are commonly used in various medical image recognition methods, common pre-training datasets such as ImageNet tend to improve the texture representation of the model but make it ignore many shape features. Weak shape feature representation is disadvantageous for some tasks that focus on shape features in medical image analysis. Methods: Inspired by the function of neurons in the human brain, in this paper, we proposed a shape-and-texture-biased two-stream network to enhance the shape feature representation in knowledge-guided medical image analysis. First, the two-stream network shape-biased stream and a texture-biased stream are constructed through classification and segmentation multi-task joint learning. Second, we propose pyramid-grouped convolution to enhance the texture feature representation and introduce deformable convolution to enhance the shape feature extraction. Third, we used a channel-attention-based feature selection module in shape and texture feature fusion to focus on the key features and eliminate information redundancy caused by feature fusion. Finally, aiming at the problem of model optimization difficulty caused by the imbalance in the number of benign and malignant samples in medical images, an asymmetric loss function was introduced to improve the robustness of the model. Results and conclusion: We applied our method to the melanoma recognition task on ISIC-2019 and XJTU-MM datasets, which focus on both the texture and shape of the lesions. The experimental results on dermoscopic image recognition and pathological image recognition datasets show the proposed method outperforms the compared algorithms and prove the effectiveness of our method.

19.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37131709

RESUMO

Ischemia-reperfusion (I/R) injury is a common occurrence in various surgical procedures used to treat heart diseases. However, the role of insulin-like growth factor 2 receptor (IGF2R) during the process of myocardial I/R remains unclear. Therefore, this study aims to investigate the expression, distribution, and functionality of IGF2R in various I/R-associated models (such as reoxygenation, revascularization, and heart transplant). Loss-of-function studies (including myocardial conditional knockout and CRISPR interference) were performed to clarify the role of IGF2R in I/R injuries. Following hypoxia, IGF2R expression increased, but this effect was reversed upon restoration of oxygen levels. Loss of myocardial IGF2R was found to enhance the cardiac contractile functions, and reduced cell infiltration or cardiac fibrosis of I/R mouse models compared to the genotype control. CRISPR-inhibition of IGF2R decreased cell apoptotic death under hypoxia. RNA sequencing analysis indicated that myocardial IGF2R played a critical role in regulating the inflammatory response, innate immune response, and apoptotic process following I/R. Integrated analysis of the mRNA profiling, pulldown assays, and mass spectrometry identified granulocyte-specific factors as potential targets of myocardial IGF2R in the injured heart. In conclusion, myocardial IGF2R emerges as a promising therapeutic target to ameliorate inflammation or fibrosis following I/R injuries.

20.
Nutrients ; 15(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37432375

RESUMO

The gut microbiome plays an essential role in regulating lipid metabolism. However, little is known about how gut microbiome modulates sex differences in lipid metabolism. The present study aims to determine whether gut microbiota modulates sexual dimorphism of lipid metabolism in mice fed a high-fat diet (HFD). Conventional and germ-free male and female mice were fed an HFD for four weeks, and lipid absorption, plasma lipid profiles, and apolipoprotein levels were then evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. After 4-week HFD consumption, the females exhibited less body weight gain and body fat composition and significantly lower triglyceride levels in very-low-density lipoprotein (VLDL) and cholesterol levels in high-density lipoprotein (HDL) compared to male mice. The fecal microbiota analysis revealed that the male mice were associated with reduced gut microbial diversity. The female mice had considerably different microbiota composition compared to males, e.g., enriched growth of beneficial microbes (e.g., Akkermansia) and depleted growth of Adlercreutzia and Enterococcus. Correlation analyses suggested that the different compositions of the gut microbiota were associated with sexual dimorphism in body weight, fat mass, and lipid metabolism in mice fed an HFD. Our findings demonstrated significant sex differences in lipid metabolism and the microbiota composition at baseline (during LFD), along with sex-dependent responses to HFD. A comprehensive understanding of sexual dimorphism in lipid metabolism modulated by microbiota will help to develop more sex-specific effective treatment options for dyslipidemia and metabolic disorders in females.


Assuntos
Microbioma Gastrointestinal , Feminino , Masculino , Animais , Camundongos , Caracteres Sexuais , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , RNA Ribossômico 16S/genética , Peso Corporal , Lipoproteínas HDL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA