Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 143(26): 2778-2790, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38603632

RESUMO

ABSTRACT: Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.


Assuntos
Hepatócitos , Janus Quinase 2 , Fígado , Receptor Notch1 , Trombopoetina , Animais , Receptor Notch1/metabolismo , Receptor Notch1/genética , Trombopoetina/metabolismo , Trombopoetina/genética , Camundongos , Fígado/metabolismo , Hepatócitos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Camundongos Knockout , Transdução de Sinais , Fosforilação , Plaquetas/metabolismo , Camundongos Endogâmicos C57BL , Trombocitopenia/metabolismo , Trombocitopenia/genética , Trombocitopenia/patologia
2.
Mol Cancer ; 23(1): 163, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123231

RESUMO

BACKGROUND: This study details a case of a patient with advanced lung adenocarcinoma harboring an exon 19 deletion in the EGFR gene. METHOD: A 46-year-old female patient was diagnosed with stage IVb left lung adenocarcinoma, with multiple bone and lymph node metastases. Following the identification of tumor-specific antigen peptides, the patient received a combination treatment of immunotherapy (TSA-DC-CTL) and oral osimertinib. Peripheral blood circulating immune cells and circulating tumor cells (CTCs) were monitored before and after treatment. PET-CT and CT scans were used to assess the tumor response to treatment. RESULTS: A significant increase in total lymphocyte percentage and decrease in the number of CTCs in the patient was observed. Imaging studies showed a notable reduction in tumor metastases. CONCLUSION: This report demonstrates the safety and efficacy of TSA-DC-CTL cell immunotherapy combined with osimertinib in the treatment of a patient with advanced lung adenocarcinoma with an EGFR exon 19 deletions. This study describes a promising new treatment option for patients with advanced lung cancer with EGFR mutations.


Assuntos
Acrilamidas , Adenocarcinoma de Pulmão , Compostos de Anilina , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Compostos de Anilina/farmacologia , Feminino , Receptores ErbB/genética , Pessoa de Meia-Idade , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Imunoterapia/métodos , Terapia Combinada , Resultado do Tratamento , Indóis , Pirimidinas
3.
Adv Sci (Weinh) ; : e2403347, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120546

RESUMO

The highly immunosuppressive tumor microenvironment (TME) restricts the efficient activation of immune responses. To restore the surveillance of the immune system for robust activation, vast efforts are devoted to normalizing the TME. Here, a manganese-doped layered double hydroxide (Mn-LDH) is developed for potent anti-tumor immunity by reversing TME. Mn-LDH is synthesized via a one-step hydrothermal method. In addition to the inherent proton neutralization capacity of LDH, the introduction of manganese oxide endows LDH with an additional ability to produce oxygen. Mn-LDH effectively releases Mn2+ and Mg2+ upon exposure to TME with high levels of H+ and H2O2, which activates synthase-stimulator of interferon genes pathway and maintains the cytotoxicity of CD8+ T cells respectively, achieving a cascade-like role in innate and adaptive immunity. The locally administered Mn-LDH facilitated a "hot" network consisting of mature dendritic cells, M1-phenotype macrophages, as well as cytotoxic and helper T cells, significantly inhibiting the growth of primary and distal tumors. Moreover, the photothermal conversion capacity of Mn-LDH sparks more robust therapeutic effects in large established tumor models with a single administration and irradiation. Overall, this study guides the rational design of TME-modulating immunotherapeutics for robust immune activation, providing a clinical candidate for next-generation cancer immunotherapy.

4.
Thromb Haemost ; 124(7): 641-648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38151026

RESUMO

BACKGROUND: Transforming growth factor-ß1 (TGF-ß1) modulates multiple cellular functions during development and tissue homeostasis. A large amount of TGF-ß1 is stored in platelet α-granules and released upon platelet activation. Whether platelet-derived TGF-ß1 plays a role in venous thrombosis remains unclear. This study intends to assess the role of platelet-derived TGF-ß1 in the development of venous thrombosis in mice. MATERIAL AND METHODS: TGF-ß1flox/flox and platelet-specific TGF-ß1-/- mice were utilized to assess platelet function in vitro, arterial thrombosis induced by FeCl3, tail bleeding time, prothrombin time (PT), activated partial thromboplastin time (APTT), and deep vein thrombosis induced through ligation of the inferior vena cava (IVC). The IVC sample was collected to measure accumulation of neutrophils, monocytes, and the formation of neutrophil extracellular traps (NETs) by immunofluorescence staining. RESULTS: TGF-ß1 deficiency in platelets did not affect the number of circulating platelets, platelet aggregation, adenosine triphosphate release, and integrin αIIbß3 activation. Meanwhile, TGF-ß1 deficiency did not alter the arterial thrombus formation, hemostasis, and coagulation time (PT and APTT), but significantly impaired venous thrombus formation, inhibited the recruitment and accumulation of neutrophils and monocytes in thrombi, as well as reduced formation of NETs and platelet-neutrophil complex. In addition, adoptive transfer of TGF-ß1flox/flox platelets to TGF-ß1-/- mice rescued the impaired venous thrombus formation, recruitment of leukocytes and monocytes, as well as the NETs formation. CONCLUSION: In conclusion, platelet-derived TGF-ß1 positively modulates venous thrombus formation in mice, indicating that targeting TGF-ß1 might be a novel approach for treating venous thrombosis without increasing the risk of bleeding.


Assuntos
Plaquetas , Camundongos Knockout , Fator de Crescimento Transformador beta1 , Trombose Venosa , Animais , Trombose Venosa/sangue , Trombose Venosa/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Plaquetas/metabolismo , Camundongos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Ativação Plaquetária , Coagulação Sanguínea , Agregação Plaquetária , Armadilhas Extracelulares/metabolismo , Masculino , Neutrófilos/metabolismo , Veia Cava Inferior/patologia , Veia Cava Inferior/metabolismo , Hemostasia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA