Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Exp Eye Res ; 229: 109416, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801237

RESUMO

Retinal ischemia-reperfusion (I/R) injury is a common pathophysiological stress state connected to various diseases, including acute glaucoma, retinal vascular obstruction, and diabetic retinopathy. Recent studies have suggested that geranylgeranylacetone (GGA) could increase heat shock protein70 (HSP70) level and reduce retinal ganglion cells (RGCs) apoptosis in a rat retinal I/R model. However, the underlying mechanism remains unclear. Moreover, the injury caused by retinal I/R includes not only apoptosis but also autophagy and gliosis, and the effects of GGA on autophagy and gliosis have not been reported. Our study established a retinal I/R model by anterior chamber perfusion pressuring to 110 mmHg for 60 min, followed by 4 h of reperfusion. The levels of HSP70, apoptosis-related proteins, GFAP, LC3-II, and PI3K/AKT/mTOR signaling proteins were determined by western blotting and qPCR after treatment with GGA, HSP70 inhibitor quercetin (Q), PI3K inhibitor LY294002, and mTOR inhibitor rapamycin. Apoptosis was evaluated by TUNEL staining, meanwhile, HSP70 and LC3 were detected by immunofluorescence. Our results demonstrated that GGA-induced HSP70 expression significantly reduced gliosis, autophagosome accumulation, and apoptosis in retinal I/R injury, indicating that GGA exerted protective effects on retinal I/R injury. Moreover, the protective effects of GGA mechanistically relied on the activation of PI3K/AKT/mTOR signaling. In conclusion, GGA-induced HSP70 overexpression has protective effects on retinal I/R injury by activating PI3K/AKT/mTOR signaling.


Assuntos
Traumatismo por Reperfusão , Doenças Retinianas , Animais , Ratos , Apoptose , Gliose , Resposta ao Choque Térmico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Doenças Retinianas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
2.
Neurochem Res ; 47(6): 1598-1609, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35171433

RESUMO

The degranulation of mast cells accounts for the development of neuroinflammation following intracerebral hemorrhage (ICH). Inhibition of IRE1α, a sensor signaling protein related to endoplasmic reticulum stress, has been shown to exert anti-inflammatory effects in several neurological diseases. The objective of this study was to investigate the effects of IRE1α inhibition on mast cells degranulation in an ICH mouse model and to explore the contribution of miR-125/Lyn pathway in IRE1α-mediated mast cells degranulation. Male mice were subjected to ICH by intraparenchymal injection of autologous blood. STF083010, an inhibitor of IRE1α, was administered intranasally at 1 h after ICH induction. AntimiR-125 was delivered by intracerebroventricular (i.c.v.) injection prior to ICH induction to elucidate the possible mechanisms. Western blot analysis, immunofluorescence staining, neurological test, hematoma volume, brain water content, toluidine blue staining and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) were performed. Endogenous phosphorylated IRE1α (p-IRE1α), tryptase, interleukin-17A (IL-17A), tumor necrosis factor α (TNF-α) and tryptase mRNA were increased in time dependent manner while miR-125b-2-3p was decreased after ICH. Inhibition of IRE1α, with STF083010, remarkably reduced brain water content, improved neurological function, decreased hematoma volume, upregulated the expression of miR-125b-2-3p, decreased the number of mast cells, and downregulated the protein expression of Lyn kinase, XBP1s (spliced X-box binding protein-1), tryptase, IL-17A and TNF-α. The downregulation of Lyn kinase, tryptase, IL-17A, TNF-α, and decreased mast cells number were reversed by antimiR-125. The present findings demonstrate that IRE1α inhibition attenuates mast cells degranulation and neuroinflammation, at least partially, through IRE1α/miR-125/Lyn signaling pathway after ICH.


Assuntos
Endorribonucleases , MicroRNAs , Animais , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Hematoma , Interleucina-17 , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases , Triptases , Fator de Necrose Tumoral alfa , Água , Quinases da Família src/metabolismo
3.
J Stroke Cerebrovasc Dis ; 30(6): 105760, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33845422

RESUMO

Dentin matrix protein 1 (DMP1) is an extracellular matrix phosphoprotein that is known to facilitate mineralization of collagen in bone and promote osteoblast/odontoblast differentiation. Blood-brain barrier (BBB) disruption is the major pathogenesis in secondary brain injury after intracerebral hemorrhage (ICH). This study aimed to investigate the expression pattern of DMP1 in the mouse brain and explore the role of DMP1 in BBB disruption and brain injury in a mouse model of ICH. Mice were subjected to autologous blood injection-induced ICH. Immunofluorescence staining, western blot analysis, neurobehavioral tests, brain water content measurements, Evans blue permeability assay, and transmission electron microscopy were performed. Small interfering RNA targeting DMP1 (DMP1 siRNA) was administered at 72 h prior to ICH. Results showed that DMP1 is expressed extensively in the mouse brain, and is upregulated in the ICH model. Administration of DMP1 siRNA effectively ameliorated BBB disruption, attenuated brain edema, and improved neurological function after ICH. Moreover, the expression of zonula occludens-1 (ZO-1) and occludin were upregulated, and matrix metalloproteinase-9 (MMP-9) was downregulated in the ICH model. DMP1 siRNA administration reversed the expression of ZO-1, occludin, and MMP-9. These results demonstrated that DMP1 upregulation plays an essential role in inducing BBB disruption and brain injury after ICH. The inhibition of DMP1 could be a potential therapeutic strategy for ICH treatment.


Assuntos
Barreira Hematoencefálica/metabolismo , Edema Encefálico/prevenção & controle , Hemorragia Cerebral/terapia , Proteínas da Matriz Extracelular/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Barreira Hematoencefálica/ultraestrutura , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Ocludina/genética , Ocludina/metabolismo , RNA Interferente Pequeno/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
4.
Mol Cell Neurosci ; 72: 64-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26808219

RESUMO

OBJECTIVE: The white matter injury caused by intracerebral hemorrhage (ICH) includes demyelination and axonal injury. Oligodendrocyte apoptosis is reported to be involved in triggering demyelination. Experimental observations indicate that both endoplasmic reticulum and mitochondrial pathways could mediate cell apoptosis. The purpose of this study was to investigate the demyelination and the possible mechanisms in an autologous blood-injected rat model of internal capsule hemorrhage. METHODS: Transmission electron microscope was applied to examine the pathological changes of myelinated nerve fibers in internal capsule. Western blotting was used to detect the myelin basic protein (MBP) which was an important component of myelin sheath. Double immunofluorescence and Western blotting were used to determine the apoptosis and apoptotic pathways. The levels of caspase-12 (a representative protein of endoplasmic reticulum stress) and cytochrome c (an apoptosis factor released from mitochondria) were assessed in this study. RESULTS: Demyelination occurred on day 1, 3, and 7 after ICH onset. Myelin sheaths of internal capsule nerve fibers were swollen and broken down in ICH groups. MBP expression showed a downregulation after ICH with its minimum value occurred on day 7 post-ICH. Besides, neuron and oligodendrocyte apoptosis were observed at different time intervals post-ICH accompanied with an upregulated caspase-12 expression and enhanced cytochrome c release. CONCLUSIONS: These results suggested that oligodendrocyte and neuron apoptosis may contribute to the demyelination induced by internal capsule hemorrhage and oligodendrocyte apoptosis is positively mediated through both endoplasmic reticulum and mitochondrial pathways.


Assuntos
Apoptose , Hemorragia Cerebral/metabolismo , Retículo Endoplasmático/metabolismo , Cápsula Interna/metabolismo , Mitocôndrias/metabolismo , Oligodendroglia/metabolismo , Animais , Hemorragia Cerebral/patologia , Cápsula Interna/ultraestrutura , Masculino , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Oligodendroglia/ultraestrutura , Ratos , Ratos Sprague-Dawley
5.
J Neurooncol ; 122(2): 283-92, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645334

RESUMO

Long non-coding RNAs (lncRNAs), a recently discovered class of non-coding genes, are transcribed throughout the genome. Emerging evidence suggests that lncRNAs may be involved in modulating various aspects of tumor biology, including regulating gene activity in response to external stimuli or DNA damage. No data are available regarding the expression of lncRNAs during genotoxic stress-induced apoptosis and/or necrosis in human glioma cells. In this study, we detected a change in the expression of specific candidate lncRNAs (neat1, GAS5, TUG1, BC200, Malat1, MEG3, MIR155HG, PAR5, and ST7OT1) during DNA damage-induced apoptosis in human glioma cell lines (U251 and U87) using doxorubicin (DOX) and resveratrol (RES). We also detected the expression pattern of these lncRNAs in human glioma cell lines under necrosis induced using an increased dose of DOX. Our results reveal that the lncRNA expression patterns are distinct between genotoxic stress-induced apoptosis and necrosis in human glioma cells. The sets of lncRNA expressed during genotoxic stress-induced apoptosis were DNA-damaging agent-specific. Generally, MEG3 and ST7OT1 are up-regulated in both cell lines under apoptosis induced using both agents. The induction of GAS5 is only clearly detected during DOX-induced apoptosis, whereas the up-regulation of neat1 and MIR155HG is only found during RES-induced apoptosis in both cell lines. However, TUG1, BC200 and MIR155HG are down regulated when necrosis is induced using a high dose of DOX in both cell lines. In conclusion, our findings suggest that the distinct regulation of lncRNAs may possibly involve in the process of cellular defense against genotoxic agents.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Glioma/tratamento farmacológico , Necrose/induzido quimicamente , RNA Longo não Codificante/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Dano ao DNA/genética , Dano ao DNA/fisiologia , Doxorrubicina/farmacologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Necrose/genética , Necrose/metabolismo , Resveratrol , Estilbenos/farmacologia
6.
Neurol Sci ; 36(6): 871-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25647291

RESUMO

Decreased brain energy metabolism is correlated with cognitive impairment in Alzheimer's disease (AD). Accumulating evidence indicates that lactate and monocarboxylate transporters (MCTs) participate in brain energy metabolism. To date, changes in lactate level and expression of MCTs in AD remain unclear. This study was conducted to detect the changes in lactate content and expression of MCT2 in Aß25-35-treated rat model of AD. Sprague-Dawley rats were randomly divided into control and model groups, which received bilateral intrahippocampal injections of saline and Aß25-35, respectively. Cognitive functions were detected by Morris water-maze test. Lactate content in the cerebral cortex and hippocampus was measured by absorbance assay. The MCT2 level in the brain was examined by immunohistochemistry and Western blot. Morris water-maze test showed that the model group exhibited impaired learning and memory compared with the control group. Lactate content in the cerebral cortex and hippocampus was decreased in the model group compared with that in the control group. Immunohistochemistry and Western blot showed that the expression of MCT2 in the model group significantly decreased compared with that in the control group. Results indicate that decreased lactate content and downregulated MCT2 expression in the cerebral cortex and hippocampus reflected impaired energy metabolism in the brain, which may participate in the pathologic progression of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/metabolismo , Ácido Láctico/metabolismo , Memória/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Córtex Cerebral/patologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem , Masculino , Ratos Sprague-Dawley
7.
Biochem Biophys Res Commun ; 440(1): 168-72, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24055034

RESUMO

Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.


Assuntos
Aquaporinas/genética , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Adolescente , Adulto , Idoso , Aquaporinas/análise , Encéfalo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , RNA Mensageiro/genética , Adulto Jovem
8.
Neuroscience ; 510: 95-108, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493910

RESUMO

Aquaporin-4 (AQP4) regulates retinal water homeostasis and participates in retinal oedema pathophysiology. ß-dystroglycan (ß-DG) is responsible for AQP4 polarization and can be cleaved by matrix metalloproteinase-9 (MMP9). Retinal oedema induced by ischemia-reperfusion (I/R) injury is an early complication. Bumetanide (BU) has potential efficacy against cytotoxic oedema. Our study investigated the effects of ß-DG cleavage on AQP4 and the roles of BU in a rat retinal I/R injury model. The model was induced by applying 110 mm Hg intraocular pressure to the anterior eye chamber. BU and U0126 (a selective ERK inhibitor) were intraperitoneally administered 15 and 30 min, respectively, before I/R induction. Rhodamine isothiocyanate extravasation detection, quantitative real-time PCR, transmission electron microscopy, hematoxylin-eosin staining, immunofluorescence staining, western blotting, and TUNEL staining were performed. AQP4 lost its polarization in the retinal perivascular domain as a result of ß-DG cleavage. BU rescued AQP4 depolarization, suppressed AQP4 protein expression, attenuated retinal cytotoxic oedema, and downregulated ß-DG and AQP4 mRNA expression. BU suppressed glial responses and mitochondria-mediated apoptotic protein expression, including that of Caspase-3 and Cyto C, raised the Bcl-2/Bax ratio, and lowered the number of apoptotic cells in the retina. Both BU and U0126 downregulated p-ERK and MMP9 expression. Thus, BU treatment suppressed ß-DG cleavage, recovered AQP4 polarization partially via inhibiting ERK/MMP9 signaling pathway, and possess potential neuroprotective efficacy in the rat retinal ischemia-reperfusion injury model.


Assuntos
Papiledema , Traumatismo por Reperfusão , Animais , Ratos , Aquaporina 4/metabolismo , Bumetanida/farmacologia , Distroglicanas/genética , Distroglicanas/metabolismo , Edema , Metaloproteinase 9 da Matriz/metabolismo , Neuroproteção , Traumatismo por Reperfusão/metabolismo , Retina/metabolismo
9.
J Spinal Cord Med ; 45(4): 595-604, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830903

RESUMO

OBJECTIVE: To investigate the effect of honokiol on demyelination after compressed spinal cord injury (CSCI) and it's possible mechanism. DESIGN: Animal experiment study. SETTING: Institute of Neuroscience of Chongqing Medical University. INTERVENTIONS: Total of 69 Sprague-Dawley (SD) rats were randomly divided into 3 groups: sham group (n=15), honokiol group (n=27) and vehicle group (n=27). After established CSCI model by a custom-made compressor successfully, the rats of sham group were subjected to the limited laminectomy without compression; the rats of honokiol group were subjected to CSCI surgery and intraperitoneal injection of 20 mg/kg honokiol; the rats of vehicle group were subjected to CSCI surgery and intraperitoneal injection of an equivalent volume of saline.Outcome measures: The locomotor function of each group was assessed using the Basso, Beattie and Bresnahan (BBB) rating scale. The pathological changes of myelinated nerve fibers of spinal cord in 3 groups were detected by osmic acid staining and transmission electron microcopy (TME). Immunofluorescence and Western blot were used to research the experessions of active caspase-3, caspase-12, cytochrome C and myelin basic protein (MBP) respectively. RESULTS: In the vehicle group, the rats became paralyzed and spastic after injury, and the myelin sheath became swollen and broken down along with decreased number of myelinated nerve fibers. Western blot analysis manifested that active caspase-3, caspase-12 and cytochrome C began to increase 1 d after injury while the expression of MBP decreased gradually. After intervened with honokiol for 6 days, compared with the vehicle group, the locomotor function and the pathomorphological changes of myelin sheath of the CSCD rats were improved with obviously decreased expression of active caspase-3, caspase-12 and cytochrome C. CONCLUSIONS: Honokiol may improve locomotor function and protect neural myelin sheat from demyelination via prevention oligodendrocytes (OLs) apoptosis through mediate endoplasmic reticulum (ER)-mitochondria pathway after CSCI.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Animais , Apoptose , Compostos de Bifenilo , Caspase 12/metabolismo , Caspase 3/metabolismo , Citocromos c/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Humanos , Lignanas , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
10.
Anat Rec (Hoboken) ; 305(2): 254-264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358403

RESUMO

Bilirubin encephalopathy (BE) is a neurological syndrome in newborns, mainly caused by neuronal injury due to excessive oxidative stress produced by unconjugated bilirubin (UCB). Neuroglobin (NGB) can protect the brain by removing oxidative stress species, but its expression and significance in BE are not clear. To address this question, the neonatal BE model was established by injecting UCB into the cerebellomedullary cistern of 7-day-old SD rats. Rats were divided into a sham and BE 6 hr group, BE 12 hr group, BE 24 hr group, and BE 7 d group according to UCB action times. Hematoxylin/eosin and Nissl staining, and electron microscopy were employed to observe the pathological and ultrastructural changes of nerve cells in each group. Immunofluorescence staining was used to detect NGB expression sites and cell types. Western blotting and quantitative PCR served to detect NGB expression and test the mitochondrial apoptosis signal pathway. The results confirm that UCB can lead to pathological damage and ultrastructural changes in rats' temporal cortex, increasing the expression of apoptosis-related proteins Bax, Bcl-2, Cyt c, Caspase-3, and neuronal NGB. UCB promotes NGB expression with an increase in action time and reach a peak at 12 hr. In summary, brain damage induced by UCB will cause an increase in NGB expression, the increasing NGB can inhibit neuron apoptosis in early BE phases. Therefore, promoting the expression of endogenous NGB, to act as a neuroprotective agent may be a potential treatment strategy for BE.


Assuntos
Globinas , Kernicterus , Animais , Globinas/genética , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Ratos , Ratos Sprague-Dawley , Lobo Temporal/metabolismo
11.
Neurosci Lett ; 741: 135453, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33186609

RESUMO

Alzheimer's disease (AD) is one of the common neurodegenerative illnesses in aging populations around the world. Recently, psychiatric symptoms are becoming increasingly important in recognizing the manifestations of AD in addition to cognitive impairment. Some studies suggest that the prefrontal cortex (PFC) is closely related to apathy/depression, and a network may exist between the CA1 of hippocampus and PFC. However, whether the injection of Aß2535 into hippocampi may result in PFC abnormalities in AD model rats is unclear. In this study, it was investigated the changes in the PFCs after the hippocampal injection via the P35/P25 - Cyclin-dependent kinase5 (CDK5) - Tau hyperphosphorylation signaling pathway. Our results demonstrated that rats injected with Aß25-35 showed decreased learning and memory ability, and increased depression-like behaviors compared with uninjected controls and saline-injected shams. P35/P25, CDK5, Tau[pS199], and Tau[pS202] are significantly elevated in the PFCs and hippocampi after Aß25-35 was injected into the hippocampi. Furthermore, P35/P25-CDK5 complexes were detected in vivo by immunofluorescence and co-immunoprecipitation. Therefore, the relative expression of proteins associated with the P35/P25-CDK5 pathway showed the same changes in the hippocampi and PFCs after Aß25-35 injection. These findings demonstrate a potential mechanism for prefrontal-mediated cognitive impairment and the psychiatric symptoms of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Fragmentos de Peptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Peptídeos beta-Amiloides/administração & dosagem , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/administração & dosagem , Fosforilação , Fosfotransferases/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Ratos Sprague-Dawley , Proteínas tau/metabolismo
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 27(2): 369-72, 2010 Apr.
Artigo em Zh | MEDLINE | ID: mdl-20481321

RESUMO

This study sought to construct recombinant eukaryotic plasmid pcDNA3. 1-sFlt-1 and observe its effect on proliferation of vascular endothelial cells. Total RNA was extracted from human umbilical vein endothelial cells (HUVECs) firstly. The 1st-3rd Ig-like domains of Flt were amplified by polymerase chain reaction (PCR) from the full-length cDNA. Subsequently, the PCR product was cloned into the eukaryotic plasmid pcDNA3.l(+)/myc-His. The constructed recombinant plasmid pcDNA3. 1-sFlt-1 was sequenced. Then recombinant plasmid was transfected into Lewis lung cancer cells. RT-PCR and SDS-PAGE were used to detect the expression of soluble vascular endothelial growth factor (VEGF) receptor mRNA and protein, respectively. MTT method was used to evaluate the effect of sFlt-1 protein on proliferation of HUVECs induced by VEGF. The results showed: (1) The sequence of inserted fragment was correct. (2) Lewis lung cancer cells with recombinant plasmid transfection could express the soluble VEGF receptor mRNA and protein stably. (3) Culture supernatant of Lewis lung cancer cells with sFlt-1 could significantly inhibit the proliferation of HUVECs induced by VEGF. These data suggested that recombinant eukaryotic plasmids pcDNA3. 1-sFlt-1 was constructed successfully, sFlt-1 mRNA and protein were expressed in eukaryotic system stably and sFlt-1 protein could significantly inhibit the proliferaton of endothelial cells induced by VEGF.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Vetores Genéticos/genética , Humanos , Transfecção , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
13.
CNS Neurosci Ther ; 26(12): 1288-1302, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32790044

RESUMO

BACKGROUND: Specific highly polarized aquaporin-4 (AQP4) expression is reported to play a crucial role in blood-brain barrier (BBB) integrity and brain water transport balance. The upregulation of polymerase δ-interacting protein 2 (Poldip2) was involved in aggravating BBB disruption following ischemic stroke. This study aimed to investigate whether Poldip2-mediated BBB disruption and cerebral edema formation in mouse bacterial meningitis (BM) model occur via induction of AQP4 polarity loss. METHODS AND RESULTS: Mouse BM model was induced by injecting mice with group B hemolytic streptococci via posterior cistern. Recombinant human Poldip2 (rh-Poldip2) was administered intranasally at 1 hour after BM induction. Small interfering ribonucleic acid (siRNA) targeting Poldip2 was administered by intracerebroventricular (i.c.v) injection at 48 hours before BM induction. A specific inhibitor of matrix metalloproteinases (MMPs), UK383367, was administered intravenously at 0.5 hour before BM induction. Western blotting, immunofluorescence staining, quantitative real-time PCR, neurobehavioral test, brain water content test, Evans blue (EB) permeability assay, transmission electron microscopy (TEM), and gelatin zymography were carried out. The results showed that Poldip2 was upregulated and AQP4 polarity was lost in mouse BM model. Both Poldip2 siRNA and UK383367 improved neurobehavioral outcomes, alleviated brain edema, preserved the integrity of BBB, and relieved the loss of AQP4 polarity in BM model. Rh-Poldip2 upregulated the expression of MMPs and glial fibrillary acidic protein (GFAP) and downregulated the expression of ß-dystroglycan (ß-DG), zonula occludens-1 (ZO-1), occludin, and claudin-5; whereas Poldip2 siRNA downregulated the expression of MMPs and GFAP, and upregulated ß-DG, ZO-1, occludin, and claudin-5. Similarly, UK383367 downregulated the expression of GFAP and upregulated the expression of ß-DG, ZO-1, occludin, and claudin-5. CONCLUSION: Poldip2 inhibition alleviated brain edema and preserved the integrity of BBB partially by relieving the loss of AQP4 polarity via MMPs/ß-DG pathway.


Assuntos
Aquaporina 4/biossíntese , Barreira Hematoencefálica/metabolismo , Edema Encefálico/metabolismo , Modelos Animais de Doenças , Meningites Bacterianas/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Nucleares/biossíntese , Administração Intranasal , Animais , Aquaporina 4/genética , Barreira Hematoencefálica/patologia , Edema Encefálico/genética , Edema Encefálico/patologia , Humanos , Masculino , Meningites Bacterianas/genética , Meningites Bacterianas/patologia , Camundongos , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética
14.
Anat Rec (Hoboken) ; 302(2): 332-338, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30312017

RESUMO

Curcumin is a natural product with several anti-Alzheimer's disease (AD) neuroprotective properties. This study aimed to investigate the effects of curcumin on memory deficits, lactate content, and monocarboxylate transporter 2 (MCT2) in APP/PS1 mouse model of AD. APP/PS1 transgenic mice and wild-type (WT) C57BL/6J mice were used in the present study. Spatial learning and memory of the mice was detected using Morris water-maze test. Cerebral cortex and hippocampus lactate contents were detected using lactate assay. MCT2 expression in the cerebral cortex and hippocampus was examined by immunohistochemistry and Western blotting. Results showed that spatial learning and memory deficits were improved in curcumin-treated APP/PS1 mouse group compared with those in APP/PS1 mice group. Brain lactate content and MCT2 protein level were increased in curcumin-treated APP/PS1 mice than in APP/PS1 mice. In summary, our findings indicate that curcumin could ameliorate memory impairments in APP/PS1 mouse model of AD. This phenomenon may be at least partially due to its improving effect on the lactate content and MCT2 protein expression in the brain. Anat Rec, 302:332-338, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/complicações , Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Modelos Animais de Doenças , Ácido Láctico/metabolismo , Transtornos da Memória/prevenção & controle , Transportadores de Ácidos Monocarboxílicos/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética
15.
Brain Res ; 1721: 146347, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31348910

RESUMO

We previously reported that aquaporin 4 (AQP4) played a critical role in formation of brain edema and the altered expression of dystroglycan (DG) could relate with AQP4 expression after traumatic brain injury (TBI). However the mechanisms of this process remain unclear. DG was showed could act as a scaffold involved in adhesion-mediated signaling in ERK/MAPK pathway. We hypothesize that after scratch, extracellular α-DG and transmembrane ß-DG may act as the scaffold in scratch mechanical force activating ERK pathway which may regulate the expression of AQP4. Use ERK inhibitor and activator to confirm whether the expression of AQP4 is regulated by the activation of ERK pathway in scratched astrocytes. Use DG siRNA to confirm whether DG takes part in the process that the extracellular signal transduces into cell and activates the ERK pathway. The significant increase of AQP4 and DG expression induced by scratch could be abolished by blocking ERK signaling and enhanced by activating ERK signaling. Blockade of DG by siRNA led to no obvious effect of scratched-injury on the ERK signaling pathway. It demonstrated that DG may act as the scaffold in scratch mechanical force activating ERK pathway which can regulate the expression of AQP4 in astrocytes after scratch.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/fisiologia , Distroglicanas/metabolismo , Animais , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Células Cultivadas , Distroglicanas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
16.
Genes Dis ; 6(4): 398-406, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832520

RESUMO

This study aimed to assess the role of microRNAs (miRNAs) in regulating monocarboxylate transporter-1 (MCT1) expression in rat brain after permanent focal cerebral ischemia to identify a new target for early treatment of cerebral ischemia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. Morphology and protein expression levels of MCT1 were assessed by immunofluorescence and Western blotting. Using bioinformatics and double luciferase reporter assays, rno-miR-124-3p was selected as a direct target for rat MCT1. Expression of rno-miR-124-3p after pMCAO was detected. Then, rats were treated with rno-miR-124-3p agomir via lateral ventricle injection, and after 6 h or 24 h ischemia, rno-miR-124-3p expression and gene and protein expression of MCT-1 were detected by qRT-PCR and Western blotting. Brain infarction was identified by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Results showed that pMCAO induced brain infarction and increased the expression of MCT1. The levels of rno-miR-124-3p after pMCAO were in contrast to those of MCT1 protein in ischemic region, while declined after 3, 6 and 12 h of pMCAO in ischemic penumbra. After administration of rno-miR-124-3p agomir, MCT1 mRNA and protein levels were increased after 6 h of pMCAO, while decreased after 24 h of pMCAO. Meanwhile, rno-miR-124-3p levels increased after both times. TTC staining showed treatment with rno-miR-124-3p agomir reduced brain infarction. The role of rno-miR-124-3p in regulating MCT1 was as a positive regulator after 6 h of pMCAO, while a negative regulator after 24 h of pMCAO, however, both activities had protective effects against cerebral ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA