Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mar Drugs ; 22(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786619

RESUMO

Among female oncology patients, cervical cancer stands as the fourth most prevalent malignancy, exerting significant impacts on their health. Over 600,000 women received the diagnosis of cervical cancer in 2020, and the illness claimed over 300,000 lives globally. Curdepsidone A, a derivative of depsidone, was isolated from the secondary metabolites of Curvularia sp. IFB-Z10. In this study, we revised the molecular structure of curdepsidone A and investigated the fundamental mechanism of the anti-tumor activity of curdepsidone A in HeLa cells for the first time. The results demonstrated that curdepsidone A caused G0/G1 phase arrest, triggered apoptosis via a mitochondrial apoptotic pathway, blocked the autophagic flux, suppressed the PI3K/AKT pathway, and increased the accumulation of reactive oxygen species (ROS) in HeLa cells. Furthermore, the PI3K inhibitor (LY294002) promoted apoptosis induced by curdepsidone A, while the PI3K agonist (IGF-1) eliminated such an effect. ROS scavenger (NAC) reduced curdepsidone A-induced cell apoptosis and the suppression of autophagy and the PI3K/AKT pathway. In conclusion, our results revealed that curdepsidone A hindered cell growth by causing cell cycle arrest, and promoted cell apoptosis by inhibiting autophagy and the ROS-mediated PI3K/AKT pathway. This study provides a molecular basis for the development of curdepsidone A as a new chemotherapy drug for cervical cancer.


Assuntos
Apoptose , Autofagia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Células HeLa , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Antineoplásicos/farmacologia
2.
J Memb Sci ; 6442022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35911189

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging contaminants in water and soil. Electrospun membranes with open structure could treat PFAS in a gravity-driven mode with ultralow pressure needs. The electrospun ultrathin fibers (67 ± 27 nm) was prepared for the enhanced specific surface area; where polyvinylidene fluoride (PVDF) backbones and the grafted quaternary ammonium moieties (QA; PVDF-g-QA membranes) provided both hydrophobicity and anion-exchange ability (electrostatic interaction). High affinity towards the perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS) molecules (denoted as PFOX collectively) was observed, and >95% PFOX was removed from synthetic groundwater with a flux of 32.3 Lm-2h-1 at ΔPo = 313 Pa. With a higher octanol/water partitioning coefficient (Log Kow = 6.3) and close dispersion interaction parameter to the membrane backbones (16.6% difference in δd), the effective PFOS removal remained under alkaline and high conductivity conditions due to the intensive hydrophobic interaction compared to that of PFOA. Long-term studies exhibited >90% PFOX removal in an 8 h test with a capacity of 258 L/m2. Under mild regeneration conditions, PFOA and PFOS were concentrated by 35-fold and 39-fold, respectively. Overall, the gravity-driven electrospun PVDF-g-QA membranes, with adsorptive effectiveness and ease of regeneration, showed great potential in PFAS remediation.

3.
Environ Res ; 197: 111040, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33771510

RESUMO

The ceramic membrane has been widely used in the wastewater treatment based on the chemical resistance and superior separation performance. A robust and defect-free thin-film nanocomposite (TFN) nanofiltration (NF) membrane on the macroporous hollow fiber ceramic (HFC) substrate was novelly developed for heavy metals removal. Before interfacial polymerization (IP), the aqueous solution of graphene oxide (GO) grafted with ethylenediamine (EDA) was deposited on the HFC substrate by vacuum filtration. Then, a thin polyamide (PA) film was fabricated by EDA and 1,3,5-trimesoyl chloride (TMC), followed by heat treatment. The effects of GO content and EDA concentration on the performance of the NF membrane have been systematically investigated. The results showed that when the GO content was 0.015 mg·mL-1 and the EDA concentration was 0.75 wt.%, the as-prepared eGO3/PA-HFC membrane had a rejection rate of 94.12% for MgCl2 and a pure water flux of 18.03 L·m-2·h-1. Additionally, the removal ability of eGO3/PA-HFC membranes for heavy metal ions was satisfactory (93.33%, 92.73%, 90.45% and 88.35% for Zn2+, Cu2+, Ni2+ and Pb2+, respectively). The study explored further that it was efficient and stable for heavy metal ions removal during 30 h in the simulated tap water and mining wastewater, which indicated that the eGO/PA-HFC membrane has great application potential in wastewater treatment.


Assuntos
Grafite , Metais Pesados , Nanocompostos , Cerâmica
4.
Mikrochim Acta ; 188(11): 395, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34709464

RESUMO

A novel visual detection mode is proposed to improve the detection sensitivity for the determination of ochratoxin A (OTA). The mode is based on aptamer recognition and the signal amplification of rolling circle amplification (RCA) products self-assembled DNA hydrogel. Moreover, gold nanoparticles (AuNPs) were directly assembled inside the DNA hydrogel by adjusting the padlock probe sequences to achieve a stronger binding force between the DNA hydrogel and AuNPs; this avoids the need for modification of AuNPs with DNA sequences. In the presence of OTA, DNA hydrogel is formed. With higher concentrations of OTA, a larger amount of DNA hydrogel is formed. When AuNPs are added to the DNA hydrogel, AuNPs can be enclosed inside the DNA hydrogel. With more DNA hydrogel, there is less AuNPs in the supernatant. Thus, the absorbance of the supernatant is anti-correlated with the concentration of OTA. After optimization of the experimental conditions, the change in the absorbance of the supernatant was linearly correlated with the concentration of OTA, in the range 0.05 to 10 ng/mL; the limit of detection was 0.005 ng/mL. The good specificity of the developed biosensor was confirmed in the presence of other mycotoxins that are coexistent with or analogues of OTA. By comparing the developed method with the ELISA method, the accuracy and stability of this new method were also verified, with good performance obtained in real samples. Diagram of the principle of the colorimetric aptasensor for OTA detection based on rolling circle amplification product self-assembled DNA hydrogel.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Hidrogéis/química , Ocratoxinas/análise , Cerveja/análise , Colorimetria/métodos , Contaminação de Alimentos/análise , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico , Ocratoxinas/química
5.
Water Sci Technol ; 84(9): 2380-2393, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34810318

RESUMO

Novel polyvinylidene fluoride/TiO2/UiO-66-NH2 (PVDF/TiUN) membranes were produced by the delay phase separation method via introducing the TiO2/UiO-66-NH2 (TiUN) nanocomposite into PVDF casting solution. Interconnection of TiO2 and UiO-66-NH2 improved photocatalysis capacity and endowed PVDF/TiUN membranes with self-cleaning capability. Quantitative measurements showed that, firstly, PVDF/TiUN membranes exhibited improved photodegradation kinetics and efficiency (up to 88.1%) to Rhodamine B (RhB). Secondly, the performances of bovine serum albumin (BSA) rejection and permeation of PVDF/TiUN membranes outperformed those of other check samples, indicating enhanced hydrophilicity. Thirdly, rejection rate of BSA reached a breathtaking 98.14% and flux recovery ratio (FRR) of BSA reached a breathtaking 95.37%. Thus, given their excellent anti-contamination property and separation performance, the PVDF/TiUN membrane is very likely to be a novel water treatment membrane.


Assuntos
Incrustação Biológica , Estruturas Metalorgânicas , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Polivinil , Titânio , Zircônio
6.
Heliyon ; 10(2): e24330, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288011

RESUMO

In the past few decades, organic solvent nanofiltration (OSN) has attracted numerous researchers and broadly applied in various fields. Unlike conventional nanofiltration, OSN always faced a broad spectrum of solvents including polar solvents and non-polar solvents. Among those recently developed OSN membranes in lab-scale or widely used commercial membranes, researchers preferred to explore intrinsic materials or introduce nanomaterials into membranes to fabricate OSN membranes. However, the hydrophilicity of the membrane surface towards filtration performance was often ignored, which was the key factor in conventional aqueous nanofiltration. The influence of surface hydrophilicity on OSN performance was not studied systematically and thoroughly. Generally speaking, the hydrophilic OSN membranes performed well in the polar solvents while the hydrophobic OSN membranes work well in the non-polar solvent. Many review papers reviewed the basics, problems of the membranes, up-to-date studies, and applications at various levels. In this review, we have focused on the relationship between the surface hydrophilicity of OSN membranes and OSN performances. The history, theory, and mechanism of the OSN process were first recapped, followed by summarizing representative OSN research classified by surface hydrophilicity and types of membrane, which recent OSN research with its contact angles and filtration performance were listed. Finally, from the industrialization perspective, the application progress of hydrophilic and hydrophobic OSN membranes was introduced. We started with history and theory, presented many research and application cases of hydrophilic and hydrophobic OSN membranes, and discussed anticipated progress in the OSN field. Also, we pointed out some future research directions on the hydrophilicity of OSN membranes to deeply develop the effect made by membrane hydrophilicity on OSN performance for future considerations and stepping forward of the OSN industry.

7.
Toxicol In Vitro ; 97: 105809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521250

RESUMO

DMC, a kind of compound derived from the dry flower buds of Cleistocalyx operculatus, has been shown to inhibit the growth of various cancer cells, but research on triple-negative breast cancer cells remains scarce. To explore this issue, MDA-MB-231 cells were selected, and the results showed that DMC has strong proliferation inhibit effects on this kind of cells. The inhibit rate of 30 µM DMC incubated for 24 h was 56.25%, and 40.6% cells were arrested under the G2/M phase. The levels of pro-apoptosis protein Bax and active caspase-3, cleaved PARP and cell cycle related proteins, such as p21 and p27 increased, but apoptosis regulators, like Bcl-2, Cdc 2, Cyclin B1, and LC3 II decreased dramatically. In addition, DMC induced the accumulation of autophagosomes and autophagic substrates, and the combination of DMC with CQ promoted apoptosis of MDA-MB-231 cells, which suggested that DMC induced apoptosis partly by blocking autophagy flow. Moreover, the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and its mechanistic target of rapamycin kinase (mTOR) were also decreased after 30 µM DMC incubating for 24 h. The proteins play a critical role in cell proliferation, apoptosis, and autophagy modulation. The inhibition of autophagy flow and PI3K/AKT/mTOR pathway could be reversed after being treated with ROS scavenger NAC. Altogether, the results of the present study suggest that DMC effectively induces apoptosis and growth inhibition in MDA-MB-231 cells through blocking autophagy flow and regulating the PI3K/AKT/mTOR pathway by increasing ROS level.


Assuntos
Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Células MDA-MB-231 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
ACS Omega ; 3(9): 11770-11787, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30320272

RESUMO

Organic solvent nanofiltration (OSN) membranes are always troubled by the "trade-off" effect between solvent flux and solute rejection. Hence, a rapid, convenient, and effective way to synthesize novel ß-cyclodextrin-enhanced zeolite imidazole framework-8 (ß-CD@ZIF-8) nanoparticles was first proposed and the nanoparticles were doped into both selective layer and poly(m-phenylene isophthalamide) support for fabricating thin-film nanocomposite membranes. Transmission/scanning electron microscopy images and X-ray photoelectron spectroscopy results demonstrate the successful synthesis of ß-CD@ZIF-8. Atomic force microscopy images illustrate the more rougher surface compared to the pristine membrane, while the pure acetone flux reached 62.3 ± 2.3 L m-2 h-1, and Rose Bengal rejection achieved 96.6 ± 1.8 and 94.5 ± 0.5% in methanol (MeOH) and tetrahydrofuran at 0.6 MPa, respectively, when the dosage was 0.05% (w/v). The molecular weight cutoff around 574 Da of PPA2505 containing ß-CD@ZIF-8 in both support and selective layers shows the optimum properties and outstanding OSN performances in erythromycin concentration and purification in MeOH and butyl acetate. Additionally, polyimide nanofiber and the formed net structure may offer a potential way to fabricate "ultrathin" film in the OSN industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA