Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Arch Microbiol ; 204(6): 321, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567648

RESUMO

Plant-microbe interactions affect ecosystem function, and plant species influence relevant microorganisms. However, the different genotypes of maize that shape the structure and function of the rhizosphere microbial community remain poorly investigated. During this study, the structures of the rhizosphere microbial community among three genotypes of maize were analyzed at the seedling and maturity stages using high-throughput sequencing and bioinformatics analysis. The results demonstrated that Tiannuozao 60 (N) showed higher bacterial and fungal diversity in both periods, while Junlong1217 (QZ) and Fujitai519 (ZL) had lower diversity. The bacterial community structure among the three varieties was significantly different; however, fewer differences were found in the fungal community. The bacterial community composition of N and QZ was similar yet different from ZL at the seedling stage. The bacterial networks of the three cultivars were more complex than the fungal networks, and the networks of the mature stages were more complex than those of the seedling stages, while the opposite was true for the fungi. FAPROTAX functional and FUNGuild functional predictions revealed that different varieties of maize were different in functional abundance at the genus level, and these differences were related to breeding characteristics. This study suggested that different maize genotypes regulated the rhizosphere bacterial and fungal communities, which would help guide practices.


Assuntos
Microbiota , Rizosfera , Bactérias/genética , Fungos/genética , Genótipo , Microbiota/genética , Melhoramento Vegetal , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Zea mays/microbiologia
2.
Arch Microbiol ; 204(1): 44, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932137

RESUMO

The Bacillus velezensis YYC strain was isolated from the tomato rhizosphere. In a previous experiment, it increased tomato growth and induced systemic resistance against Ralstonia solanacearum. However, information on its genomic content is lacking. The complete genome sequence of the bacterium was described in this study. The genome size was 3,973,236 bp and consisted of 4034 genes in total, with a mean G + C content of 46.52%. In addition, 86 tRNAs and 27 ribosomal RNAs were identified. Fourteen clusters of secondary metabolites were identified. The KEGG database analysis showed that 69 genes were related to quorum sensing, which were important for microbe-plant interaction. In addition, genes involved in promoting plant growth and triggering plant immunity were identified from the genome. Based on digital DNA-DNA hybridizations (dDDH), B. velezensis YYC was most closely related with B. velezensis FZB42. The complete genome data of B. velezensis YYC will provide a basis for explanation of its growth-promoting mechanism and biocontrol mechanism.


Assuntos
Bacillus , Solanum lycopersicum , Bacillus/genética , Genoma Bacteriano , Rizosfera
3.
Microb Cell Fact ; 20(1): 69, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731109

RESUMO

BACKGROUND: Myriocin is a natural product with antifungal activity and is derived from Bacillus amyloliquefaciens LZN01. Our previous work demonstrated that myriocin can inhibit the growth of Fusarium oxysporum f. sp. niveum (Fon) by inducing membrane damage. In this study, the antifungal actions of myriocin against Fon were investigated with a focus on the effects of myriocin on intracellular molecules. RESULTS: Analysis of DNA binding and fluorescence spectra demonstrated that myriocin can interact with dsDNA from Fon cells. The intracellular-targeted mechanism of action was also supported by transcriptomic and proteomic analyses; a total of 2238 common differentially expressed genes (DEGs) were identified. The DEGs were further verified by RT-qPCR. Most of the DEGs were assigned metabolism and genetic information processing functions and were enriched in ribosome biogenesis in eukaryotes pathway. The expression of some genes and proteins in ribosome biogenesis in eukaryotes pathway was affected by myriocin, primarily the genes controlled by the C6 zinc cluster transcription factor family and the NFYA transcription factor. Myriocin influenced the posttranscriptional processing of gene products by triggering the main RI (retained intron) events of novel alternative splicing; myriocin targeted key genes (FOXG_09470) or proteins (RIOK2) in ribosome biogenesis in eukaryotes pathway, resulting in disordered translation. CONCLUSIONS: In conclusion, myriocin was determined to exhibit activity against Fon by targeting intracellular molecules. The results of our study may help to elucidate the antifungal actions of myriocin against Fon.


Assuntos
Antifúngicos/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Proteínas Fúngicas/genética , Fusarium/efeitos dos fármacos , Transcriptoma , Processamento Alternativo , Antifúngicos/metabolismo , DNA Fúngico/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Simulação de Acoplamento Molecular , Anotação de Sequência Molecular , Proteômica , Ribossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Plant Microbe Interact ; 33(10): 1222-1231, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32597697

RESUMO

Elucidation of the underlying mechanisms of plant growth promotion of rhizobacteria is very important. This study explored the mechanism by which Bacillus pumilus LZP02 promotes growth in rice roots through proteomic, transcriptomic, and metabolomic techniques. The results showed that B. pumilus LZP02 promoted the absorption of phosphorous, calcium, and magnesium ions by colonization of rice roots and enhanced peroxidase, catalase, superoxide dismutase, and Ca2+Mg2+ adenosine triphosphatase activities and chlorophyll contents in rice. The proteomic results showed that most of the differentially expressed proteins were involved in carbohydrate metabolism and that the biosynthesis of other secondary metabolites was also increased. According to RNA-seq and reverse transcription-quantitative PCR analyses, expression of some genes involved in carbohydrate metabolism and phenylpropanoid biosynthesis was upregulated in rice roots. Regarding metabolomics, phenylpropanoid biosynthesis, starch and sucrose metabolism, the pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism were increased. The results indicated that B. pumilus LZP02 promoted the growth of rice roots by enhancing carbohydrate metabolism and phenylpropanoid biosynthesis.


Assuntos
Bacillus pumilus/fisiologia , Metabolismo dos Carboidratos , Oryza/crescimento & desenvolvimento , Fenilalanina/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/microbiologia , Raízes de Plantas/microbiologia , Proteômica , Metabolismo Secundário
5.
Arch Microbiol ; 202(8): 2169-2179, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32519022

RESUMO

Bacillus methylotrophicus has been demonstrated to promote growth of various plants, whereas the promoting effect of B. methylotrophicus on rice growth has been rarely reported. In this study, B. methylotrophicus DD-1, capable of efficiently promoting the growth of rice, was isolated from the root soil of rice plants. The isolate exhibited potassium-solubilizing (1.18 mg/L), Indole-3-acetic acid (IAA) (87.26 mg/L), Gibberellic acid (GA) (25.91 mg/L) and Siderophore production activity (52.32%). As indicated from the result, plant growth parameters (e.g., dry weight, tiller number, root and shoot length) of rice seedlings treated with the isolate DD-1 were more effective than those of the control group in pot and soilless culture experiments. Moreover, the adsorption capacity of rice roots which were soaked in the bacterial suspension of isolate increased with the increase in concentration and absorption time. In sterilized and unsterilized soil, conformation of root colonization activity by bacterial isolate established by its nearer existence to the rice root. Thus, the B. methylotrophicus DD-1 enhances plant growth promotion by multifarious growth promoting and root colonization traits, thereby augmenting potassium level in soil. Henceforth, the potential bacterium could be exploited for the development of biological fertilizer, leading towards sustainable agronomy.


Assuntos
Bacillus/fisiologia , Oryza/microbiologia , Raízes de Plantas/microbiologia , Plântula/microbiologia , Microbiologia do Solo , Bacillus/isolamento & purificação , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal , Plântula/crescimento & desenvolvimento , Sideróforos/metabolismo
6.
Ecotoxicol Environ Saf ; 167: 36-43, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30292974

RESUMO

Dimethyl phthalate (DMP) is a ubiquitous pollutant that is very harmful to organisms due to its mutagenicity, teratogenicity and carcinogenicity. Pseudomonas fluorescens (P. fluorescens) is one of the most important bacteria in the environment. In this study, the response of P. fluorescens to DMP was investigated. It was found that DMP greatly inhibited the growth and glucose utilization of P. fluorescens when the concentration of DMP was ranged from 20 to 40 mg/l. The surface hydrophobicity and membrane permeability of P. fluorescens were also increased by DMP. DMP could lead to the deformations of cell membrane and the mis-opening of membrane channels. RNA-Seq and RT-qPCR results showed that the expression of some genes in P. fluorescens were altered, including the genes involved in energy metabolism, ATP-binding cassette (ABC) transporting and two-component systems. Additionally, the productions of lactic acid and pyruvic acid were reduced and the activity of hexokinase was inhibited in P. fluorescens by DMP. Clearly, the results suggested that DMP contamination could alter the biological function of P. fluorescens in the environment.


Assuntos
Ácidos Ftálicos/toxicidade , Pseudomonas fluorescens/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Mutagênicos/toxicidade , Pseudomonas fluorescens/genética , Análise de Sequência de RNA , Transcriptoma
7.
Ecotoxicol Environ Saf ; 174: 146-152, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30825737

RESUMO

Ubiquitous dimethyl phthalate (DMP) has severely threatened environmental safety and the health of organisms. Therefore, it is necessary to degrade DMP, removing it from the environment. Microbiological degradation is an efficient and safe method for degrading DMP. In this study, the response of Arthrobacter QD 15-4 to DMP was investigated. The results showed that the growth of Arthrobacter QD 15-4 was not impacted by DMP and Arthrobacter QD 15-4 could degrade DMP. RNA-Seq and RT-qPCR results showed that DMP treatment caused some changes in the expression of key genes in Arthrobacter QD 15-4. The transcriptional expressions of pstSCAB and phoU were downregulated by DMP. The transcriptional expressions of potACD, gluBC, oppAB, pdhAB, aceAF, gltA were upregulated by DMP. The genes are mainly involved in regulating energy metabolism and ATP-binding cassette (ABC) transporters. The increasing of pyruvic acid and citrate in Arthrobacter QD 15-4 further supported the energy metabolism was improved by DMP. It was clearly shown that Arthrobacter QD 15-4 made response to dimethyl phthalate by regulating energy metabolism and ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arthrobacter/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Ftálicos/metabolismo , Arthrobacter/efeitos dos fármacos , Arthrobacter/crescimento & desenvolvimento , Biodegradação Ambiental , Metabolismo Energético/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácidos Ftálicos/farmacologia
8.
Ecotoxicol Environ Saf ; 180: 208-214, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31096126

RESUMO

Dimethyl phthalate (DMP), a phthalate ester (PAE), is a ubiquitous and organic pollutant. In this study, the toxicity of DMP to Escherichia coli K12 and its underlying mechanism were investigated. The results showed that DMP inhibited the growth of E. coli K12 and induced cell inactivation and/or death. DMP caused serious damage to the cell membrane of E. coli K12, and the damage increased with higher DMP concentrations. DMP exposure disrupted cell membranes, as evidenced by dose-dependent variations of cell structures, surface properties, and membrane compositions. Increases in the malondialdehyde (MDA) content indicated an increase in oxidative stress induced by DMP in E. coli K12. The activity of succinic dehydrogenase (SDH) was changed by DMP, which could affect energy metabolism in the membrane of E. coli K12. The expression levels of OmpA and OmpX were increased, and the expression levels of OmpF and OmpW were decreased, in E. coli K12 exposed to DMP. The toxicities of DMP to E. coli K12 could be ascribed to membrane disruption and oxidative stress-induced cell inactivation and/or death. The outcomes will shed new light on the assessment of the ecological effects of DMP.


Assuntos
Poluentes Ambientais/toxicidade , Escherichia coli K12/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/efeitos dos fármacos , Escherichia coli K12/metabolismo , Malondialdeído/análise , Estresse Oxidativo
10.
PLoS Genet ; 10(12): e1004755, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25502438

RESUMO

Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley.


Assuntos
Resistência à Doença , Hordeum/genética , MicroRNAs/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Alelos , Ascomicetos , Sequência de Bases , Morte Celular , Repressão Epigenética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Hordeum/microbiologia , MicroRNAs/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transcrição Gênica , Traduções , Triticum/genética
11.
New Phytol ; 201(4): 1396-1412, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24246006

RESUMO

• Barley (Hordeum vulgare L.) Mildew resistance locus a (Mla) confers allele-specific interactions with natural variants of the ascomycete fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew disease. Significant reprogramming of Mla-mediated gene expression occurs upon infection by this obligate biotrophic pathogen. • We utilized a proteomics-based approach, combined with barley mla, required for Mla12 resistance1 (rar1), and restoration of Mla resistance1 (rom1) mutants, to identify components of Mla-directed signaling. • Loss-of-function mutations in Mla and Rar1 both resulted in the reduced accumulation of chloroplast copper/zinc superoxide dismutase 1 (HvSOD1), whereas loss of function in Rom1 re-established HvSOD1 levels. In addition, both Mla and Rom1 negatively regulated hvu-microRNA398 (hvu-miR398), and up-regulation of miR398 was coupled to reduced HvSOD1 expression. Barley stripe mosaic virus (BSMV)-mediated over-expression of both barley and Arabidopsis miR398 repressed accumulation of HvSOD1, and BSMV-induced gene silencing of HvSod1 impeded Mla-triggered H2O2 and hypersensitive reaction (HR) at barley-Bgh interaction sites. • These data indicate that Mla- and Rom1-regulated hvu-miR398 represses HvSOD1 accumulation, influencing effector-induced HR in response to the powdery mildew fungus.


Assuntos
Ascomicetos/fisiologia , Cloroplastos/enzimologia , Hordeum/citologia , Hordeum/microbiologia , MicroRNAs/genética , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Alelos , Morte Celular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Hordeum/genética , MicroRNAs/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/microbiologia
12.
Pest Manag Sci ; 80(3): 1423-1434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939121

RESUMO

BACKGROUND: Our previous findings indicated that Bacillus velezensis WB could control Fusarium wilt by changing the structure of the microbial community in the watermelon rhizosphere. However, there are few studies on its mechanism in the pathogen resistance of watermelon. Therefore, in this study, we determined the mechanism of B. velezensis WB-induced systemic resistance in watermelon against Fusarium wilt through glasshouse pot experiments. RESULTS: The results showed that B. velezensis WB significantly reduced the incidence and disease index of Fusarium wilt in watermelon. B. velezensis WB can enhance the basal immunity of watermelon plants by: increasing the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POD), superoxide dismutase (SOD) and ß-1,3-glucanase; accumulating lignin, salicylic acid (SA) and jasmonic acid (JA); reducing malondialdehyde (MDA) concentrations; and inducing callus deposition in watermelon plant cells. RNA-seq analysis showed that 846 watermelon genes were upregulated and 612 watermelon genes were downregulated in the WF treatment. This process led to the activation of watermelon genes associated with auxin, gibberellin, SA, ethylene and JA, and the expression of genes in the phenylalanine biosynthetic pathway was upregulated. In addition, transcription factors involved in plant resistance to pathogens, such as MYB, NAC and WRKY, were induced. Gene correlation analysis showed that Cla97C10G195840 and Cla97C02G049930 in the phenylalanine biosynthetic pathway, and Cla97C02G041360 and Cla97C10G197290 in the plant hormone signal transduction pathway showed strong correlations with other genes. CONCLUSION: Our results indicated that B. velezensis WB is capable of inducing systemic resistance in watermelon against Fusarium wilt. © 2023 Society of Chemical Industry.


Assuntos
Bacillus , Citrullus , Ciclopentanos , Fusarium , Oxilipinas , Fusarium/genética , Doenças das Plantas , Ácido Salicílico/metabolismo , Fenilalanina
13.
Sci Rep ; 14(1): 4904, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418572

RESUMO

The sinter cooler, essential for cooling hot sintered ore to a specific temperature, has seen recent advancements with the introduction of a vertical sinter cooling furnace. This innovation aims to enhance energy efficiency, reduce emissions, and improve waste heat recovery. Despite significant research, a quantitative analysis of factors impacting its cooling and heat transfer efficiency is lacking. This study utilizes the Euler model and local non-equilibrium thermodynamic theory to identify key factors affecting the gas-solid cooperative cooling process in the vertical cooler. Through an orthogonal experimental approach, the paper determines the optimal structural and operational parameters for the furnace. Key findings include that a gas-solid ratio of 1200m^3/t, inlet air temperature of 50 â„ƒ, cooling section height of 6m, and diameter of 13.25m maximize efficiency, achieving a weighted range normalization value of 0.962. This configuration meets sintered ore cooling requirements while optimizing waste heat recovery. The study reveals that the impact on heat transfer efficiency is influenced primarily by the gas-solid ratio, followed by the cooling section's height, diameter, and inlet air temperature. These insights are crucial for enhancing the vertical sinter cooler's design, contributing to more energy-efficient and environmentally friendly sintering processes.

14.
Front Pharmacol ; 15: 1364135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510648

RESUMO

The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.

15.
Microorganisms ; 12(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38792768

RESUMO

The biological degradation of plant residues in the soil or on the soil surface is an integral part of the natural life cycle of annual plants and does not have adverse effects on the environment. Crop straw is characterized by a complex structure and exhibits stability and resistance to rapid microbial decomposition. In this study, we conducted a microcosm experiment to investigate the dynamic succession of the soil microbial community and the functional characteristics associated with lignocellulose-degrading pathways. Additionally, we aimed to identify lignocellulose-degrading microorganisms from the straw of three crop species prevalent in Northeast China: soybean (Glycine max Merr.), rice (Oryza sativa L.), and maize (Zea mays L.). Our findings revealed that both the type of straw and the degradation time influenced the bacterial and fungal community structure and composition. Metagenome sequencing results demonstrated that during degradation, different straw types assembled carbohydrate-active enzymes (CAZymes) and KEGG pathways in distinct manners, contributing to lignocellulose and hemicellulose degradation. Furthermore, isolation of lignocellulose-degrading microbes yielded 59 bacterial and 14 fungal strains contributing to straw degradation, with fungi generally exhibiting superior lignocellulose-degrading enzyme production compared to bacteria. Experiments were conducted to assess the potential synergistic effects of synthetic microbial communities (SynComs) comprising both fungi and bacteria. These SynComs resulted in a straw weight loss of 42% at 15 days post-inoculation, representing a 22% increase compared to conditions without any SynComs. In summary, our study provides novel ecological insights into crop straw degradation by microbes.

16.
Environ Sci Pollut Res Int ; 30(5): 13702-13710, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136186

RESUMO

Dimethyl phthalate (DMP) is one of the most widely used plasticizers, and it is easily released into the environment, posing a threat to microbes. In this study, the impact of DMP on the uptake and metabolism of sugars in E. coli K-12 was assessed using proteomics, computational simulation analysis, transcriptome analysis, and sugar utilization experiments. DMP contamination inhibited the growth of E. coli K-12 and downregulated the expression of proteins in ATP-binding cassette (ABC) transporters and the phosphotransferase (PTS) system of E. coli K-12, which are primarily involved in the transmembrane transport of sugars. DMP formed a stable complex with sugar transporters and changed the rigidity and stability of the proteins. Furthermore, DMP treatment decreased the utilization of L-arabinose, glucose, D-xylose, and maltose. Moreover, carbon metabolism and oxidative phosphorylation were also downregulated by DMP. Our study shows that DMP reduces the uptake of sugars and ATP production and subsequently inhibits the growth of E. coli K-12.


Assuntos
Metabolismo Energético , Escherichia coli K12 , Proteínas de Escherichia coli , Plastificantes , Açúcares , Trifosfato de Adenosina/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Açúcares/metabolismo , Plastificantes/farmacologia
17.
ACS Sens ; 8(10): 3902-3913, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37738225

RESUMO

This study presents a miniaturized sensor for rapid, selective, and sensitive detection of bean pod mottle virus (BPMV) in soybean plants. The sensor employs molecularly imprinted polymer technology to generate BPMV-specific nanocavities in porous polypyrrole. Leveraging the porous structure, high surface reactivity, and electron transfer properties of polypyrrole, the sensor achieves a sensitivity of 143 µA ng-1 mL cm-2, a concentration range of 0.01-100,000 ng/mL, a detection time of less than 2 min, and a detection limit of 41 pg/mL. These capabilities outperform those of conventional methods, such as enzyme-linked immunosorbent assays and reverse transcription polymerase chain reactions. The sensor possesses the ability to distinguish BPMV-infected soybean plants from noninfected ones while rapidly quantifying virus levels. Moreover, it can reveal the spatial distribution of virus concentration across distinct leaves, a capability not previously attained by cost-effective sensors for such detailed viral data within a plant. The BPMV-specific nanocavities can also be easily restored and reactivated for multiple uses through a simple wash with acetic acid. While MIP-based sensors for plant virus detection have been relatively understudied, our findings demonstrate their potential as portable, on-site diagnostic tools that avoid complex and time-consuming sample preparation procedures. This advancement addresses a critical need in plant virology, enhancing the detection and management of plant viral diseases.


Assuntos
Comovirus , Vírus de Plantas , Polímeros , Pirróis
18.
ACS Omega ; 8(5): 4586-4596, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777566

RESUMO

Magnesium hydride (MH) is one of the most promising hydrogen storage materials. Under the hydrogen storage process, it will emit a large amount of heat, which limits the efficiency of the hydrogen storage reaction. In this paper, the hydrogen storage performance of the magnesium hydrogen storage reactor (MHSR) and the effect of structural parameters were studied by numerical simulation. The effect of different operating conditions on the hydrogen storage performance of the MHSR is analyzed. The volume energy storage rate (VESR) was taken as the comprehensive evaluation index (CEI). The results show that fins and heat exchange tubes can improve the heat transfer performance of the MHSR. Increasing fin thickness can reduce hydrogen storage time, but increasing fin spacing is the opposite. With the increase of fin thickness and fin spacing, VESR increases first and then decreases. With the increase of inlet temperature, the hydrogen storage time decreases first and then increases. When the inlet velocity is more than 5 m/s, the hydrogen storage time basically stays at 900 s. By optimizing the operating conditions, the hydrogen storage time can be shortened by 57.8%.

19.
ACS Omega ; 8(49): 46914-46921, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107898

RESUMO

According to the design and operational parameters of the cyclone liquid slag-discharging boiler, an experimental platform for the cyclone burner was designed and constructed in a cold state based on the principle of similarity. The experimental study investigated the effects of parameters, such as swirl-vane angles, coal concentration, operating parameters, and particle size, on the flow distribution and vertical riser resistance characteristics of the vertical cyclone burner. The results showed that there were differences in flow distribution among the cyclone burners, and the most uniform flow distribution was achieved when the swirl-vane angle of the primary air was 30°. The concentration of pulverized coal significantly influenced the pressure drop in the vertical ascending section, which increased with higher concentrations of pulverized coal. When the concentration of pulverized coal remains constant, the pipeline pressure drop is minimized at a primary air velocity of 7.5 m/s. As the secondary wind speed increased, the pressure drop consistently rose; when the secondary wind speed is 22 m/s, the pressure drop of the pipeline is the maximum; however, excessively high secondary wind speeds were found to be detrimental to the formation of an optimal aerodynamic field in the burner. Furthermore, when the pulverized coal concentration was held constant, materials with larger particle sizes exhibited the highest pressure drop. When the particle size increases from 50 to 150 µm, the pressure drop of the vertical riser segment also increases. Finally, based on the Barth additional pressure drop theory, the pressure drop formula of the vertical riser is fitted by a dimensional analysis method, and the correlation formula of the pressure drop test of gas-solid two-phase flow in the vertical riser is obtained.

20.
Environ Sci Pollut Res Int ; 30(8): 20265-20276, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36251182

RESUMO

Microbes often form complex ecological networks in various habitats. Co-occurrence network analysis allows exploring the complex community interactions beyond the community diversities. This study explores the interspecific relationships within and between bacterial and fungal communities during composting of cow manure using co-occurrence network analysis. Furthermore, the keystone taxa that potentially exert a considerable impact on the microbiome were revealed by network analysis. The networks in the present study harbored more positive links. Specifically, the interactions/coupling within bacterial communities was tighter and the response to changes in external environmental conditions was more quickly during the composting process, while the fungal network had a better buffer capacity for changes in external environmental conditions. Interestingly, this result was authenticated in the bacterial-fungal (BF) network and the Mantel test of major modules and environmental variables. More than that, the Zi-Pi plot revealed that the keystone taxa including "module hubs" and "connectors" were all detected in these networks, which could prevent the dissociation of modules and networks.


Assuntos
Compostagem , Microbiota , Feminino , Bovinos , Animais , Esterco/microbiologia , Zea mays , Bactérias , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA