Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 62(2): 968-986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37507642

RESUMO

Circular RNA (circRNA) plays important roles in lumbar degenerative diseases. This study aimed to investigate the role of circSNTB2 in regulating the development of lumbar disc herniation (LDH) in vitro and in vivo. The abnormally expressed circSNTB2 in intervertebral disc degeneration (IDD) through bioinformatics analysis was identified, and verified in nucleus pulposus (NP) tissues of patients with LDH. NP cells were treated with TNF-α to mimic the LDH microenvironment. RT-qPCR was applied to determine levels of mRNA and microRNA (miRNA) in clinical samples and cells. We performed CCK-8, EdU, TUNEL and flow cytometric apoptosis assays to evaluate the proliferation and apoptosis of NP cells. The predicted the miRNAs and downstream target genes were verified with the help of luciferase reporter gene and RNA pull-down experiments. Finally, we established an LDH rat model to further verify the role of circSNTB2 in vivo. circSNTB2 was significantly up-regulated in the NP tissues of LDH group and TNF-α -treated NP cells. miR-665 binds to circSNTB2 and cullin 4A (CUL4A) is the downstream target gene of miR-665. Knockdown of circSNTB2 promoted NP cells proliferation and inhibited apoptosis, which was reversed by down-regulation of miR-665. In addition, up-regulated CUL4A reversed the effects of over-expressed miR-665 on proliferation and apoptosis of NP cells. Meanwhile, results of in vivo experiments demonstrated that knocking down circSNTB2 alleviated LDH-induced thermo-mechanical pain and NP injury. In summary, circSNTB2 regulates the proliferation and apoptosis of NP by mediating miR-665 regulation of CUL4A, which provides a reliable idea for targeted therapy of LDH.

2.
IEEE Trans Robot ; 39(2): 1637-1652, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035529

RESUMO

This paper presents the development of an exoskeleton glove system for people who suffer from brachial plexus injuries, aiming to assist their lost grasping functionality. The robotic system consists of a portable glove system and an embedded controller. The glove system consists of Linear Series Elastic Actuators (LSEA), Rotary Series Elastic Actuators (RSEA), and optimized finger linkages to provide imitated human motion to each finger and a coupled motion of the hand. The design principles and optimization strategies were investigated to balance functionality, portability, and stability. The model-based force control strategy compensated with a backlash model and model-free force control strategy are presented and compared. Results show that our proposed model-free control method achieves the goal of accurate force control. Finally, experiments were conducted with the prototype of the developed integrated exoskeleton glove system. Results from 3 subjects with 150 trials show that our proposed exoskeleton glove system has the potential to be used as a rehabilitation device for patients.

3.
Mechatronics (Oxf) ; 832022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35241876

RESUMO

This paper proposes a novel human machine interface (HMI) and electronics system design to control a rehabilitation robotic exoskeleton glove. Such system can be activated with biometric authentication using the user's voice, take voice commands as input, recognize the command and perform biometric authentication in real-time with limited computing power, and execute the command on the exoskeleton. The electronics design is a stand-alone plug-and-play modulated design independent of the exoskeleton design. This personalized voice activated grasping system achieves better wearability, lower latency, and improved security than any existing exoskeleton glove control system.

4.
BMC Gastroenterol ; 21(1): 58, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568105

RESUMO

BACKGROUND: Pancreatic cancer (PC) is a devastating disease that has a poor prognosis and a total 5-year survival rate of around 5%. The poor prognosis of PC is due in part to a lack of suitable biomarkers that can allow early diagnosis. The lysophospholipase autotaxin (ATX) and its product lysophosphatidic acid (LPA) play an essential role in disease progression in PC patients and are associated with increased morbidity in several types of cancer. In this study, we evaluated both the potential role of serum LPA and ATX as diagnostic markers in PC and their prognostic value for PC either alone or in combination with CA19-9. METHODS: ATX, LPA and CA19-9 levels were evaluated using ELISA of serum obtained from PC patients (n = 114) healthy volunteers (HVs: n = 120) and patients with benign pancreatic diseases (BPDs: n = 94). RESULTS: Serum levels of ATX, LPA and CA19-9 in PC patients were substantially higher than that for BPD patients or HVs (p < 0.001). The sensitivity of LPA in early phase PC was 91.74% and the specificity of ATX was 80%. The levels of ATX, LPA and CA19-9 were all substantially higher for early stage PC patients compared to levels in serum from BPD patients and HVs. The diagnostic efficacy of CA19-9 for PC was significantly enhanced by the addition of ATX and LPA (p = 0.0012). CONCLUSION: Measurement of LPA and ATX levels together with CA19-9 levels can be used for early detection of PC and diagnosis of PC in general.


Assuntos
Neoplasias Pancreáticas , Diester Fosfórico Hidrolases , Biomarcadores , Humanos , Lipoproteína(a) , Lisofosfolipídeos , Neoplasias Pancreáticas/diagnóstico , Prognóstico
5.
IEEE Sens J ; 21(19): 21120-21130, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35422676

RESUMO

The working principle of a SEA is based on using an elastic material connected serially to the mechanical power source to simulate the dynamic behavior of a human muscle. Due to weight and size limitations of a wearable robotic exoskeleton, the hardware design of the SEA is limited. Compact and lightweight SEAs usually have noisy signal output, and can easily be deformed. This paper uses a compact lightweight SEA designed for exoskeleton gloves to demonstrate immeasurable strain and friction force which can cause an average of 34.31% and maximum of 44.7% difference in force measurement on such SEAs. This paper proposes two data driven machine learning methods to accurately calibrate and control SEAs. The multi-layer perception (MLP) method can reduce the average force measurement error to 10.18% and maximum error to 29.13%. The surface fitting method (SF) method can reduce the average force measurement error to 8.06% and maximum error to 35.72%. In control experiments, the weighted MLP method achieves an average of 0.21N force control difference, and the SF method achieves an average of 0.29N force control difference on the finger tips of the exoskeleton glove.

6.
Biol Res ; 52(1): 29, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31084615

RESUMO

BACKGROUND: Acute kidney injury (AKI), which is mainly caused by sepsis, has high morbidity and mortality rates. CXCL8(3-72) K11R/G31P (G31P) can exert therapeutic effect on inflammatory diseases and malignancies. We aimed to investigate the effect and mechanism of G31P on septic AKI. METHODS: An AKI mouse model was established, and kidney injury was assessed by histological analysis. The contents of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured by commercial kits, whereas neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) were detected by enzyme-linked immunosorbent assay (ELISA) kits. The expressions of CXCL8 in serum and kidney tissues were determined using ELISA and immunohistochemical analysis, respectively. Apoptosis rate of renal tissue was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis. The expressions of inflammatory cytokines were measured by quantitative real-time PCR and Western blot, respectively. The apoptosis-related proteins, JAK2, STAT3, NF-κB and IκB were determined by Western blot. RESULTS: G31P could reduce the levels of SCr, BUN, HGAL and KIM-1 and inhibit the renal tissue injury in AKI mice. G31P was also found to suppress the serum and nephric CXCL8 expressions and attenuated the apoptosis rate. The levels of inflammatory cytokines, pro-apoptotic proteins were decreased, while the anti-apoptotic proteins were increased by G31P in AKI mice. G31P also inhibited the activation of JAK2, STAT3 and NF-κB in AKI mice. CONCLUSION: These results suggest that G31P could protect renal function and attenuate the septic AKI. Our findings provide a potential target for the treatment of AKI.


Assuntos
Injúria Renal Aguda/etiologia , Janus Quinase 2/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Sepse/complicações , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/patologia , Transdução de Sinais
7.
Res Sq ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693405

RESUMO

This paper presents a vision-based Human-Machine Interface (HMI) for an assistive exoskeleton glove, designed to incorporate force planning capabilities. While Electroencephalogram (EEG) and Electromyography (EMG)-based HMIs allow direct grasp force planning via user signals, voice and vision-based HMIs face limitations. In particular, two primary force planning methods encounter issues in these HMIs. First, traditional force optimization struggles with unfamiliar objects due to lack of object information. Second, the slip-grasp method faces a high failure rate due to inadequate initial grasp force. To address these challenges, this paper introduces a vision-based HMI to estimate the initial grasp forces of the target object. The initial grasp force estimation is performed based on the size and surface material of the target object. The experimental results demonstrate a grasp success rate of 87. 5%, marking significant improvements over the slip-grasp method (71.9%).

8.
Heliyon ; 9(8): e18957, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600408

RESUMO

Respiratory infections, whether chronic or acute, are frequent in both children and adults and result in an economic burden in health care systems. In particular, for an immunocompromised patient, respiratory infection leads to acute hypoxemic respiratory failure, a leading cause of intensive care unit (ICU) admission. Most respiratory infections are caused by bacteria, viruses, parasites, smoking, or air pollution. Over the last two decades, considerable improvements have been made in understanding and identifying respiratory infections. Various biosensing techniques have been developed with a range of targets to identify the infection at earlier stages. Recently, nanomaterials have been effectively applied to improve biosensors and their analytical performances. This review discusses recent biosensor developments for identifying respiratory infections caused by viruses and bacteria assisted by different types of nanomaterials and target molecules.

9.
RSC Adv ; 13(27): 18347-18362, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37342806

RESUMO

With the development of nuclear energy, spent cationic exchange resins after purification of radioactive wastewater must be treated. Molten-salt oxidation (MSO) can minimize the disposal content of resins and capture SO2. In this work, the decomposition of uranium-containing resins in carbonate molten salt in N2 and air atmospheres was investigated. Compared to N2 atmosphere, the content of SO2 released from the decomposition of resins was relatively low at 386-454 °C in an air atmosphere. The SEM morphology indicated that the presence of air facilitated the decomposition of the resin cross-linked structure. The decomposition efficiency of resins in an air atmosphere was 82.6% at 800 °C. The XRD analysis revealed that uranium compounds had the reaction paths of UO3 → UO2.92 → U3O8 and UO3 → K2U2O7 → K2UO4 in the carbonate melt, and sulfur elements in resins were fixed in the form of K3Na(SO4)2. The XPS result illustrated that peroxide and superoxide ions accelerated the conversion of sulfone sulfur to thiophene sulfur and further oxidized to CO2 and SO2. Besides, the ion bond formed by uranyl ions on the sulfonic acid group was decomposed at high temperature. Finally, the decomposition of uranium-containing resins in the carbonate melt in an air atmosphere was explained. This study provided more theoretical guidance and technical support for the industrial treatment of uranium-containing resins.

10.
Chemosphere ; 331: 138837, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146777

RESUMO

Cationic exchange resins (CERs) were applied for purification and clarifying process of radioactive wastewater in nuclear industry, which was a kind of sulfur-containing organic material. Molten-salt oxidation (MSO) method can be applied for the treatment of spent CERs and the absorption of acid gas (such as SO2). The experiments about the molten salt destruction of the original resin and Cu ions doped resin were conducted. The transformation of organic sulfur in Cu ions doped resin was investigated. Compared with the original resin, the content of tail gas (such as CH4, C2H4, H2S and SO2) released from the decomposition of Cu ions doped resin was relatively high at 323-657 °C. Sulfur elements in the form of sulfates and copper sulfides were fixed in spent salt through XRD analysis. The XPS result revealed that the portion of functional sulfonic acid groups (-SO3H) in Cu ions doped resin was converted into sulfonyl bridges (-SO2-) at 325 °C. With the enhancement of temperature, sulfonyl bridges (-SO2-) were further decomposed to sulfoxides sulfur (-SO-) and organic sulfide sulfur. The destruction of thiophenic sulfur to H2S and CH4 was prompted by copper ions in copper sulfide. Sulfoxide were oxidized to the sulfone sulfur in molten salt. Sulfones sulfur consumed by reduction of Cu ions at 720 °C was more than it produced by oxidation of sulfoxide through XPS analysis, and the relative proportion of sulfone sulfur was 16.51%.


Assuntos
Resinas de Troca de Cátion , Cobre , Enxofre , Sulfetos , Cloreto de Sódio , Sulfonas , Sódio , Lítio
11.
Environ Sci Pollut Res Int ; 30(6): 16729-16740, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525196

RESUMO

Molten salt oxidation (MSO) is an advanced method for waste resins treatment; nevertheless, the research about gas product variations of resins under different stoichiometric air feed coefficient (α) is rare. The optimal working condition of hazardous waste disposal is obtained through thermodynamic equilibrium calculation, and the method to improve the treatment efficiency is found to guide the optimization of the actual experiment. In this paper, Fact Sage was used to calculate the oxidation products of cation exchange resins (CERs) at different temperatures and α, focusing on the similarities and differences through the contents of CO, CH4, CO2, and SO2 during the oxidation of CERs, the MSO of CERs, and the theoretical calculation. The results indicated that the gas products of the calculation and reality of the oxidation process of CERs are quite different, while the CO contents of CERs during MSO are close to the calculated values. The main reason for this consequence is that in the oxidation process of CERs, the S in the sulfonic acid group will form thermally stable C-S with the styrene-divinylbenzene skeleton. Moreover, the introduction of carbonate can promote the destruction of C-S and absorb SO2 as sulfate, weakening the influence of C-S on the oxidation products of CERs. The gas chromatograph results indicated that the SO2 content is reduced from 0.66% in the process of CERs oxidation to 0.28% in MSO of CERs. When 1.25 times stoichiometric air feed coefficient is fed, the sulfate content in the carbonate is the highest at 900 °C, which is 23.4%.


Assuntos
Resinas de Troca de Cátion , Gases , Cloreto de Sódio , Cloreto de Sódio na Dieta , Carbonatos , Oxigênio
12.
Scand J Gastroenterol ; 47(1): 89-98, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22050097

RESUMO

OBJECTIVE: Interstitial cells of Cajal (ICCs) in the gastrointestinal tract generate and propagate slow waves and mediate neuromuscular neurotransmission. Damage to ICCs has been described in several gastrointestinal motor disorders, and although many studies have examined ICCs in culture, they have been largely limited to freshly dissociated cells or short-term cultures. An efficient and reliable method to establish a source of ICCs is much needed. The aim of this study was to investigate methods for culturing, subculturing, cryopreservation, and recovery of ICCs. METHODS: ICCs were derived from intestinal segments of domestic rabbits, and immunohistochemistry for c-Kit was used to identify ICCs in culture and after recovery. Recovered ICCs were also examined for motilin receptor expression. RESULTS: Optimal conditions for ICC culture and cryopreservation were based on cell growth curves and MTT assay. On the basis of these findings, recovered cells were cultured for 7 days and then sorted via flow cytometry based on c-Kit immunoreactivity. The percent of c-Kit positive cells was 64.3%, and the number of ICCs sorted was 6.7 × 10(5). Reverse-transcription polymerase chain reaction and western blotting verified motilin receptor expression in c-Kit-positive ICCs. CONCLUSIONS: This is the first study to describe the culture, passage, and recovery of ICCs and to show motilin receptor expression. Our results suggest that ICCs play an important role, at least in some species, in initiating the migrating myoelectric complex induced by motilin.


Assuntos
Técnicas de Cultura de Células , Criopreservação , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Imuno-Histoquímica , Células Intersticiais de Cajal/metabolismo , RNA Mensageiro/metabolismo , Coelhos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo
13.
Rep U S ; 2022: 11121-11126, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37293247

RESUMO

This paper presents the design and development of a novel, low-profile, exoskeleton robotic glove aimed for people who suffer from brachial plexus injuries to restore their lost grasping functionality. The key idea of this new glove lies in its new finger mechanism that takes advantage of the rigid coupling hybrid mechanism (RCHM) concept. This mechanism concept couples the motions of the adjacent human finger links using rigid coupling mechanisms so that the overall mechanism motion (e.g., bending, extension, etc.) could be achieved using fewer actuators. The finger mechanism utilizes the single degree of freedom case of the RCHM that uses a rack-and-pinion mechanism as the rigid coupling mechanism. This special arrangement enables to design each finger mechanism of the glove as thin as possible while maintaining mechanical robustness simultaneously. Based on this novel finger mechanism, a two-finger low-profile robotic glove was developed. Remote center of motion mechanisms were used for the metacarpophalangeal (MCP) joints. Kinematic analysis and optimization-based kinematic synthesis were conducted to determine the design parameters of the new glove. Passive abduction/adduction joints were considered to improve the grasping flexibility. A proof-of-concept prototype was built and pinch grasping experiments of various objects were conducted. The results validated the mechanism and the mechanical design of the new robotic glove and demonstrated its functionalities and capabilities in grasping objects with various shapes and weights that are used in activities of daily living (ADLs).

14.
Rep U S ; 2022: 11115-11120, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37303849

RESUMO

This paper presents the development and experimental evaluation of a portable haptic exoskeleton glove system designed for people who suffer from brachial plexus injuries to restore their lost grasping functionality. The proposed glove system involves force perception, linkage-driven finger mechanism, and personalized voice control to achieve various grasping functionality requirements. The fully integrated system provides our wearable device with lightweight, portable, and comfortable characterization for grasping objects used in daily activities. Rigid articulated linkages powered by Series Elastic Actuators (SEAs) with slip detection on the fingertips provide stable and robust grasp for multiple objects. The passive abduction-adduction motion of each finger is also considered to provide better grasping flexibility for the user. The continuous voice control with bio-authentication also provides a hands-free user interface. The experiments with different objects verify the functionalities and capabilities of the proposed exoskeleton glove system in grasping objects with various shapes and weights used in activities of daily living (ADLs).

15.
Artigo em Inglês | MEDLINE | ID: mdl-36507922

RESUMO

This paper presents a novel index finger exoskeleton mechanism for patients who suffer from brachial plexus injuries, which takes advantage of our previously proposed rigid coupling hybrid mechanism (RCHM) concept used for robotic tail mechanisms. The core idea of this concept is to drive the (i+1)-th link using the motions of the i-th link, instead of the traditional way of transmitting motion directly from the base. This specific configuration allows designing a single degree of freedom (DOF) bending mechanism using a low-profile rack and pinion mechanism and makes the proposed exoskeleton system compact, lightweight, and portable, which are highly desired features for daily usages of exoskeleton gloves. The mechanism is optimized to mimic the grasping motions of human fingers and the sensitivity analysis of its critical design variables is then conducted to explore the performance of the optimization results. The results show that for the current design, the tip position accuracy is mainly affected by the distance between the rack and the corresponding joints. A proof-of-concept prototype was built to verify the novel mobility of the proposed mechanism and to evaluate its performance on a human finger. The index finger exoskeleton experiments demonstrate the new mechanism's ability to grasp small objects.

16.
Micromachines (Basel) ; 13(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208405

RESUMO

In recent years, low-power wireless sensors with high flexibility, portability and computing capability have been extensively applied in areas such as military, medicine and mechanical equipment condition monitoring. In this paper, a novel symmetrical T-shaped trapezoidal micro piezoelectric energy harvester (STTM-PEH) is proposed to supply energy for wireless sensors monitoring the vibrations of mechanical equipment. Firstly, the finite element model (FEM) of the STTM-PEH is established. Secondly, the modal analysis of the T-shaped trapezoidal piezoelectric cantilever beam is carried out by finite element software and its vibration modes are obtained. Additionally, the structural characteristics of the STTM-PEH and the composition of piezoelectric patches are described. Furthermore, the effects of resistance, acceleration coefficient, substrate materials and structural parameters of the output performance of the STTM-PEH are researched. The results indicate that the output power of the STTM-PEH rises first and then falls with a change in resistance, while the output voltage does not increase as resistance increases to a certain extent. Meanwhile, selecting copper as the piezoelectric material of the T-shaped trapezoidal piezoelectric cantilever beam can generate a higher energy output. Finally, how the structural parameters, including piezoelectric patch thickness, substrate thickness and cantilever head length, affect the output performance of the STTM-PEH is studied, which illustrates that the load range of the STTM-PEH can be appropriately broadened by adjusting the length of the cantilever beam head. This research is valuable for designing a novel high performance piezoelectric energy harvester.

17.
IEEE Access ; 10: 49064-49079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157332

RESUMO

As neurodegenerative disease pathological hallmarks have been reported in both grey matter (GM) and white matter (WM) with different density distributions, automating the segmentation process of GM/WM would be extremely advantageous for aiding in neuropathologic deep phenotyping. Standard segmentation methods typically involve manual annotations, where a trained researcher traces the delineation of GM/WM in ultra-high-resolution Whole Slide Images (WSIs). This method can be time-consuming and subjective, preventing a scalable analysis on pathology images. This paper proposes an automated segmentation pipeline (BrainSec) combining a Convolutional Neural Network (CNN) module for segmenting GM/WM regions and a post-processing module to remove artifacts/residues of tissues. The final output generates XML annotations that can be visualized via Aperio ImageScope. First, we investigate two baseline models for medical image segmentation: FCN, and U-Net. Then we propose a patch-based approach, BrainSec, to classify the GM/WM/background regions. We demonstrate BrainSec is robust and has reliable performance by testing it on over 180 WSIs that incorporate numerous unique cases as well as distinct neuroanatomic brain regions. We also apply gradient-weighted class activation mapping (Grad-CAM) to interpret the segmentation masks and provide relevant explanations and insights. In addition, we have integrated BrainSec with an existing Amyloid-ß pathology classification model into a unified framework (without incurring significant computation complexity) to identify pathologies, visualize their distributions, and quantify each type of pathologies in segmented GM/WM regions, respectively.

18.
Ann Surg Oncol ; 17(5): 1453-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20112071

RESUMO

BACKGROUND: As the main downstream effecter of tumor suppressor p53, p21(Waf1/Cip1) functions as a unique link from p53 to cell-cycle arrest and DNA repair. In contrast to p53, p21(Waf1/Cip1) has general rare mutations. The natural genetic variants of p21(Waf1/Cip1) have thus emerged for study to enhance understanding of interindividual differences in cancer risk. Two polymorphisms in the p21 ( Waf1/Cip1 ) gene, i.e., codon 31 in the coding region and IVS2+16 in intron 2, have been identified and appeared to influence the expression of p21(Waf1/Cip1). The aim of this study is to investigate the potential association of the above two variants, including one new single-nucleotide polymorphism (SNP) 309 in the promoter region of p21 ( Waf1/Cip1 ), with susceptibility to esophageal cancer (EC). PATIENTS AND METHODS: The study involved 80 cancer patients and 200 cancer-free controls from Ningxia Region of China. Three variations (codon 31, IVS2+16, and SNP 309) were identified by polymerase chain reaction (PCR) direct sequencing method, and associations of each individual SNP and haplotypes of the three SNPs with esophageal cancer were analyzed. RESULTS: The correlation results supported that codon 31 Ser homozygosity conferred risk for the process of developing EC [odds ratio (OR) = 2.542, 95% confidence interval (CI) = 1.347-4.730]. In the combined study of the three variations, HapA and HapB appeared to influence the risk of EC. CONCLUSIONS: Our findings indicated that codon 31 Ser allele homozygosity, either alone or in combination with the other two SNPs, may be associated with development of EC. These findings warrant validation in a larger study of EC patients.


Assuntos
Carcinoma de Células Escamosas/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Neoplasias Esofágicas/genética , Polimorfismo de Nucleotídeo Único/genética , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , DNA de Neoplasias/genética , Neoplasias Esofágicas/patologia , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Prognóstico , Regiões Promotoras Genéticas/genética , Fatores de Risco , Taxa de Sobrevida
19.
Artigo em Inglês | MEDLINE | ID: mdl-36478444

RESUMO

Efficient human-machine interface (HMI) for exoskeletons remains an active research topic, where sample methods have been proposed including using computer vision, EEG (electroencephalogram), and voice recognition. However, some of these methods lack sufficient accuracy, security, and portability. This paper proposes a HMI referred as integrated trigger-word configurable voice activation and speaker verification system (CVASV). The CVASV system is designed for embedded systems with limited computing power that can be applied to any exoskeleton platform. The CVASV system consists of two main sections, including an API based voice activation section and a deep learning based text-independent voice verification section. These two sections are combined into a system that allows the user to configure the activation trigger-word and verify the user's command in real-time.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36479635

RESUMO

This paper presents the design of an exoskeleton glove system for people who suffer from the brachial plexus injuries in an effort to restore their lost grasping functionality. The robotic system consists of an embedded controller and a portable glove system. The glove system consists of Linear Series Elastic Actuators (SEA), Rotary SEA and optimized finger linkages to provide motion to each finger and a coupled motion of the hand and the wrist. The design is based on various functionality requirements such as being lightweight and portable for activities of daily living, especially for grasping. The contact force at each fingertip and bending angle of each finger are measured for future implementation of intelligent control algorithms for autonomous grasping. To provide better flexibility and comfort for the users, abduction and adduction of each finger as well as flexion of the thumb were taken into consideration in the design. The glove system is adjustable for different hand sizes. The micro-controllers and batteries are integrated on the forearm in order to provide a completely portable design solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA