Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(5): 3136-3146, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38276886

RESUMO

Aqueous Zn batteries have recently emerged as promising candidates for large-scale energy storage, driven by the need for a safe and cost-effective technology with sufficient energy density and readily accessible electrode materials. However, the energy density and cycle life of Zn batteries have been limited by inherent chemical, morphological, and mechanical instabilities at the electrode-electrolyte interface where uncontrolled reactions occur. To suppress the uncontrolled reactions, we designed a crystalline polymer interphase for both electrodes, which simultaneously promotes electrode reversibility via fast and selective Zn transport through the adaptive formation of ion channels. The interphase comprises an ultrathin layer of crystalline poly(1H,1H,2H,2H-perfluorodecyl acrylate), synthesized and applied as a conformal coating in a single step using initiated chemical vapor deposition (iCVD). Crystallinity is optimized to improve interphase stability and Zn-ion transport. The optimized interphase enables a cycle life of 9500 for Zn symmetric cells and over 11,000 for Zn-MnO2 full-cell batteries. We further demonstrate the generalizability of this interphase design using Cu and Li as examples, improving their stability and achieving reversible cycling in both. The iCVD method and molecular design unlock the potential of highly reversible and cost-effective aqueous batteries using earth-abundant Zn anode materials, pointing to grid-scale energy storage.

2.
Water Sci Technol ; 90(1): 384-397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007326

RESUMO

Fe(II) is of great importance in iron-based advanced oxidation processes. However, traditional methods to maintain Fe(II) concentration, such as the addition of chelating agents or reducing agents, may lead to an increase in chemical oxygen demand of secondary pollution. Therefore, in this study, iron sulfides, namely ferrous sulfide (FeS), pyrite (FeS2), and sulfidated nanoscale zero-valent iron (S-nZVI), were applied for not only the regeneration of Fe(II) but also the direct dissolution of Fe(II). Nanoscale calcium peroxide (nCaO2) was synthesized and used as the oxidant. The removal of 1,2-dichloroethane (1,2-DCA) were significantly promoted from 8.8 to 98.2, 79.2, and 80.8% with the aid of FeS, FeS2, and S-nZVI within 180 min, respectively. The dominant reactive oxygen species were demonstrated and their steady-state concentrations were quantified. Besides, the dechlorination of 1,2-DCA reached 90.4, 69.5, and 83.9% in nCaO2/Fe(III) systems coupled with FeS, FeS2, and S-nZVI, respectively. All three systems had high tolerance to the complex water conditions, of which FeS-enhanced nCaO2/Fe(III) system displayed the best performance, which could be recommended to put into practice for the remediation of 1,2-DCA contaminated groundwater.


Assuntos
Dicloretos de Etileno , Ferro , Peróxidos , Sulfetos , Poluentes Químicos da Água , Dicloretos de Etileno/química , Peróxidos/química , Sulfetos/química , Ferro/química , Poluentes Químicos da Água/química , Compostos Férricos/química , Purificação da Água/métodos , Compostos Ferrosos
3.
ACS Nano ; 18(22): 14605-14616, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771979

RESUMO

Direct detection of circularly polarized light (CPL) holds great promise for the development of various optical technologies. Chiral 2D organic-inorganic halide perovskites make it possible to fabricate CPL-sensitive photodetectors. However, selectively detecting left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) light remains a significant challenge. Herein, we demonstrate a greatly enhanced distinguishability of photodiode-type CPL photodetectors based on chiral 2D perovskites with mixed chiral aryl (R)-(+),(S)-(-)-α-methylbenzylammonium (R,S-MBA) and achiral alkyl n-butylammonium (nBA) cations. The (R,S-MBA0.5nBA0.5)2PbI4 perovskites exhibit a 10-fold increase in circular dichroism signals compared to (R,S-MBA)2PbI4 perovskites. The CPL photodetectors based on the mixed-cation perovskites exhibit self-powered capabilities with a specific detectivity of 2.45 × 1012 Jones at a 0 V bias. Notably, these devices show high distinguishability (gres) factors of -0.58 and +0.54 based on (R,S-MBA0.5nBA0.5)2PbI4 perovskites, respectively, surpassing the performance of (R-MBA)2PbI4-based devices by over 3-fold and setting a record for CPL detectors based on chiral 2D n = 1 perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA