Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 26(5): 1775-1788, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385898

RESUMO

AIM: The liver is an important metabolic organ that governs glucolipid metabolism, and its dysfunction may cause non-alcoholic fatty liver disease, type 2 diabetes mellitus, dyslipidaemia, etc. We aimed to systematic investigate the key factors related to hepatic glucose metabolism, which may be beneficial for understanding the underlying pathogenic mechanisms for obesity and diabetes mellitus. MATERIALS AND METHODS: Oral glucose tolerance test (OGTT) phenotypes and liver transcriptomes of BXD mice under chow and high-fat diet conditions were collected from GeneNetwork. QTL mapping was conducted to pinpoint genomic regions associated with glucose homeostasis. Candidate genes were further nominated using a multi-criteria approach and validated to confirm their functional relevance in vitro. RESULTS: Our results demonstrated that plasma glucose levels in OGTT were significantly affected by both diet and genetic background, with six genetic regulating loci were mapped on chromosomes 1, 4, and 7. Moreover, TEAD1, MYO7A and NDUFC2 were identified as the candidate genes. Functionally, siRNA-mediated TEAD1, MYO7A and NDUFC2 knockdown significantly decreased the glucose uptake and inhibited the transcription of genes related to insulin and glucose metabolism pathways. CONCLUSIONS: Our study contributes novel insights to the understanding of hepatic glucose metabolism, demonstrating the impact of TEAD1, MYO7A and NDUFC2 on mitochondrial function in the liver and their regulatory role in maintaining in glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica , Glucose/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
EMBO J ; 38(18): e100948, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31418899

RESUMO

As a ubiquitous bacterial secondary messenger, c-di-GMP plays key regulatory roles in processes such as bacterial motility and transcription regulation. CobB is the Sir2 family protein deacetylase that controls energy metabolism, chemotaxis, and DNA supercoiling in many bacteria. Using an Escherichia coli proteome microarray, we found that c-di-GMP strongly binds to CobB. Further, protein deacetylation assays showed that c-di-GMP inhibits the activity of CobB and thereby modulates the biogenesis of acetyl-CoA. Interestingly, we also found that one of the key enzymes directly involved in c-di-GMP production, DgcZ, is a substrate of CobB. Deacetylation of DgcZ by CobB enhances its activity and thus the production of c-di-GMP. Our work establishes a novel negative feedback loop linking c-di-GMP biogenesis and CobB-mediated protein deacetylation.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sirtuínas/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , GMP Cíclico/metabolismo , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Análise Serial de Proteínas/métodos , Proteômica/métodos , Sistemas do Segundo Mensageiro
3.
Environ Res ; 235: 116659, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451575

RESUMO

Filter is an important component in the air-conditioning system. The airborne microorganisms can be intercepted and further multiply on the filter, which might cause a secondary pollution. The present work proposed a SiC composite filter (SCF), namely combining the filter with the absorbing material SiC. The disinfection efficiency (η) and mechanism of the microwave radiation method (MRM) on E. coli and S. aureus attached to the SCF were experimentally explored. The impacts of the microwave power (P) and disinfection time (t) on η were investigated. The results show that the SCF can be heated well by the microwave, but the normal filter (NF) cannot. The MRM can effectively and rapidly disinfect bacteria on the SCF at a sufficiently high P and an appropriate t. Generally, η increases with P and t. Under a specific P, η can be only increased with t at a certain range and a peak η might be reached. When this peak is achieved, η will not be further increased with t. The disinfection by the MRM is attributed to the thermal and non-thermal effects. Specially, at P = 600 W and t = 10 min, the non-thermal effect contributes about 89.6% to the disinfection of the E. coli and about 43.1% to the S. aureus. A universal relationship between η and temperature is given for E. coli and S. aureus to predict η at various P and t. Finally, the effective temperatures required by the MRM to satisfactorily disinfect bacteria on the SCF are identified, i.e., about 41 °C for E. coli and 71 °C for S. aureus.


Assuntos
Micro-Ondas , Staphylococcus aureus , Escherichia coli , Desinfecção/métodos , Temperatura Alta , Bactérias
4.
Mol Cell Proteomics ; 20: 100059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33109704

RESUMO

Antibodies play essential roles in both diagnostics and therapeutics. Epitope mapping is essential to understand how an antibody works and to protect intellectual property. Given the millions of antibodies for which epitope information is lacking, there is a need for high-throughput epitope mapping. To address this, we developed a strategy, Antibody binding epitope Mapping (AbMap), by combining a phage displayed peptide library with next-generation sequencing. Using AbMap, profiles of the peptides bound by 202 antibodies were determined in a single test, and linear epitopes were identified for >50% of the antibodies. Using spike protein (S1 and S2)-enriched antibodies from the convalescent serum of one COVID-19 patient as the input, both linear and potentially conformational epitopes of spike protein specific antibodies were identified. We defined peptide-binding profile of an antibody as the binding capacity (BiC). Conceptually, the BiC could serve as a systematic and functional descriptor of any antibody. Requiring at least one order of magnitude less time and money to map linear epitopes than traditional technologies, AbMap allows for high-throughput epitope mapping and creates many possibilities.


Assuntos
COVID-19/imunologia , Mapeamento de Epitopos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitopos/metabolismo , Proteínas de Escherichia coli/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Soros Imunes/sangue , Soros Imunes/imunologia , Biblioteca de Peptídeos
5.
Small ; 18(51): e2205647, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328734

RESUMO

Tumor hypoxia and systemic toxicity seriously affect the efficacy of photodynamic therapy (PDT) and are considered as the "Achilles' heel" of PDT. Herein, to combat such limitations, an intelligent orthogonal emissions LDNP@SiO2 -CaO2 and folic acid-polyethylene glycol-Ce6 nanodrug is rationally designed and fabricated not only for relieving the hypoxic tumor microenvironment (TME) to enhance PDT efficacy, but also for determining the optimal triggering time through second near-infrared (NIR-II) fluorescence imaging. The designed nanodrug continuously releases a large amount of O2 , H2 O2 , and Ca2+ ions when exposed to the acidic TME. Meanwhile, under downshifting NIR-II bioimaging guidance, chlorine e6 (Ce6) consumes oxygen to produce 1 O2 upon excitation of upconversion photon. Moreover, cytotoxic reactive oxygen species (ROS) and calcium overload can induce mitochondria injury and thus enhance the oxidative stress in tumor cells. As a result, the NIR-II bioimaging guided TME-responsive oxygen self-sufficient PDT nanosystem presents enhanced anti-tumor efficacy without obvious systemic toxicity. Thus, the fabricated nanodrug offers great potential for designing an accurate cancer theranostic system.


Assuntos
Nanopartículas , Fotoquimioterapia , Fotoquimioterapia/métodos , Oxigênio , Dióxido de Silício , Linhagem Celular Tumoral , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Microambiente Tumoral , Nanopartículas/uso terapêutico
6.
J Nanobiotechnology ; 20(1): 264, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672821

RESUMO

The application of chemodynamic therapy (CDT) for cancer is a serious challenge owing to the low efficiency of the Fenton catalyst and insufficient H2O2 expression in cells. Herein, we fabricated a PDGFB targeting, biodegradable FePt alloy assembly for magnetic resonance imaging (MRI)-guided chemotherapy and starving-enhanced chemodynamic therapy for cancer using PDGFB targeting, pH-sensitive liposome-coated FePt alloys, and GOx (pLFePt-GOx). We found that the Fenton-catalytic activity of FePt alloys was far stronger than that of traditional ultrasmall iron oxide nanoparticle (UION). Upon entry into cancer cells, pLFePt-GOx nanoliposomes degraded into many tiny FePt alloys and released GOx owing to the weakly acidic nature of the tumor microenvironment (TME). The released GOx-mediated glucose consumption not only caused a starvation status but also increased the level of cellular H2O2 and acidity, promoting Fenton reaction by FePt alloys and resulting in an increase in reactive oxygen species (ROS) accumulation in cells, which ultimately realized starving-enhanced chemodynamic process for killing tumor cells. The anticancer mechanism of pLFePt-GOx involved ROS-mediated apoptosis and ferroptosis, and glucose depletion-mediated starvation death. In the in vivo assay, the systemic delivery of pLFePt-GOx showed excellent antitumor activity with low biological toxicity and significantly enhanced T2-weighted magnetic resonance imaging (MRI) signal of the tumor, indicating that pLFePt-GOx can serve as a highly efficient theranostic tool for cancer. This work thus describes an effective, novel multi-modal cancer theranostic system.


Assuntos
Nanopartículas , Neoplasias , Ligas , Linhagem Celular Tumoral , Glucose , Humanos , Peróxido de Hidrogênio/metabolismo , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
7.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 556-564, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35607955

RESUMO

Age has been found to be one of the main risk factors for the severity and outcome of COVID-19. However, differences in SARS-CoV-2 specific antibody responses among COVID-19 patients of different age groups remain largely unknown. In this study, we analyzed the IgG/IgM responses to 21 SARS-CoV-2 proteins and 197 peptides that fully cover the spike protein against 731 sera collected from 731 COVID-19 patients aged from 1 to We show that there is no overall difference in SARS-CoV-2 antibody responses in COVID-19 patients in the 4 age groups. By antibody response landscape maps, we find that the IgG response profiles of SARS-CoV-2 proteins are positively correlated with age. The S protein linear epitope map shows that the immunogenicity of the S-protein peptides is related to peptide sequence, disease severity and age of the COVID-19 patients. Furthermore, the enrichment analysis indicates that low S1 IgG responses are enriched in patients aged <50 and high S1 IgG responses are enriched in mild COVID-19 patients aged >60. In addition, high responses of non-structural/accessory proteins are enriched in severe COVID-19 patients aged >70. These results suggest the distinct immune response of IgG/IgM to each SARS-CoV-2 protein in patients of different age, which may facilitate a deeper understanding of the immune responses in COVID-19 patients.


Assuntos
Fatores Etários , Formação de Anticorpos , COVID-19 , Idoso , Anticorpos Antivirais/sangue , COVID-19/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Pessoa de Meia-Idade , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807221

RESUMO

Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.


Assuntos
Neoplasias Ósseas , Receptores de Estrogênio , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Homeostase , Humanos , Osteoblastos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
9.
Allergy ; 76(2): 551-561, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33040337

RESUMO

BACKGROUND: The missing asymptomatic COVID-19 infections have been overlooked because of the imperfect sensitivity of the nucleic acid testing (NAT). Globally understanding the humoral immunity in asymptomatic carriers will provide scientific knowledge for developing serological tests, improving early identification, and implementing more rational control strategies against the pandemic. MEASURE: Utilizing both NAT and commercial kits for serum IgM and IgG antibodies, we extensively screened 11 766 epidemiologically suspected individuals on enrollment and 63 asymptomatic individuals were detected and recruited. Sixty-three healthy individuals and 51 mild patients without any preexisting conditions were set as controls. Serum IgM and IgG profiles were further probed using a SARS-CoV-2 proteome microarray, and neutralizing antibody was detected by a pseudotyped virus neutralization assay system. The dynamics of antibodies were analyzed with exposure time or symptoms onset. RESULTS: A combination test of NAT and serological testing for IgM antibody discovered 55.5% of the total of 63 asymptomatic infections, which significantly raises the detection sensitivity when compared with the NAT alone (19%). Serum proteome microarray analysis demonstrated that asymptomatics mainly produced IgM and IgG antibodies against S1 and N proteins out of 20 proteins of SARS-CoV-2. Different from strong and persistent N-specific antibodies, S1-specific IgM responses, which evolved in asymptomatic individuals as early as the seventh day after exposure, peaked on days from 17 days to 25 days, and then disappeared in two months, might be used as an early diagnostic biomarker. 11.8% (6/51) mild patients and 38.1% (24/63) asymptomatic individuals did not produce neutralizing antibody. In particular, neutralizing antibody in asymptomatics gradually vanished in two months. CONCLUSION: Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health, and immunization strategies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Portador Sadio/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/diagnóstico , Teste para COVID-19/métodos , Portador Sadio/sangue , Portador Sadio/diagnóstico , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade
10.
J Nanobiotechnology ; 19(1): 227, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330298

RESUMO

The cell membrane is widely considered as a promising delivery nanocarrier due to its excellent properties. In this study, self-assembled Pseudomonas geniculate cell membranes were prepared with high yield as drug nanocarriers, and named BMMPs. BMMPs showed excellent biosafety, and could be more efficiently internalized by cancer cells than traditional red cell membrane nanocarriers, indicating that BMMPs could deliver more drug into cancer cells. Subsequently, the BMMPs were coated with nanoselenium (Se), and subsequently loaded with Mn2+ ions and doxorubicin (DOX) to fabricate a functional nanoplatform (BMMP-Mn2+/Se/DOX). Notably, in this nanoplatform, Se nanoparticles activated superoxide dismutase-1 (SOD-1) expression and subsequently up-regulated downstream H2O2 levels. Next, the released Mn2+ ions catalyzed H2O2 to highly toxic hydroxyl radicals (·OH), inducing mitochondrial damage. In addition, the BMMP-Mn2+/Se nanoplatform inhibited glutathione peroxidase 4 (GPX4) expression and further accelerated intracellular reactive oxygen species (ROS) generation. Notably, the BMMP-Mn2+/Se/DOX nanoplatform exhibited increased effectiveness in inducing cancer cell death through mitochondrial and nuclear targeting dual-mode therapeutic pathways and showed negligible toxicity to normal organs. Therefore, this nanoplatform may represent a promising drug delivery system for achieving a safe, effective, and accurate cancer therapeutic plan.


Assuntos
Biomimética , Doxorrubicina/farmacologia , Manganês/farmacologia , Mitocôndrias/metabolismo , Nanopartículas , Selênio/química , Antineoplásicos/farmacologia , Biomassa , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Tratamento Farmacológico , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Íons , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1
11.
Mol Cell Proteomics ; 18(9): 1851-1863, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308251

RESUMO

Systemic lupus erythematosus (SLE) is one of the most serious autoimmune diseases, characterized by highly diverse clinical manifestations. A biomarker is still needed for accurate diagnostics. SLE serum autoantibodies were discovered and validated using serum samples from independent sample cohorts encompassing 306 participants divided into three groups, i.e. healthy, SLE patients, and other autoimmune-related diseases. To discover biomarkers for SLE, a phage displayed random peptide library (Ph.D. 12) and deep sequencing were applied to screen specific autoantibodies in a total of 100 serum samples from 50 SLE patients and 50 healthy controls. A statistical analysis protocol was set up for the identification of peptides as potential biomarkers. For validation, 10 peptides were analyzed using enzyme-linked immunosorbent assays (ELISA). As a result, four peptides (SLE2018Val001, SLE2018Val002, SLE2018Val006, and SLE2018Val008) were discovered with high diagnostic power to differentiate SLE patients from healthy controls. Among them, two peptides, i.e. SLE2018Val001 and SLE2018Val002, were confirmed between SLE with other autoimmune patients. The procedure we established could be easily adopted for the identification of autoantibodies as biomarkers for many other diseases.


Assuntos
Lúpus Eritematoso Sistêmico/sangue , Biblioteca de Peptídeos , Peptídeos/sangue , Adulto , Área Sob a Curva , Doenças Autoimunes/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Reprodutibilidade dos Testes
12.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 628-635, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33637989

RESUMO

PD-1 plays an important role as an immune checkpoint. Sintilimab is a newly approved PD-1 antibody for cancer immunotherapy with an unknown binding epitope on PD-1. In this study, to elucidate the molecular mechanism by which sintilimab blocks PD-1 activation, we applied Antibody binding epitope Mapping (AbMap) to identify the binding epitope of sintilimab. An epitope was successfully identified, i.e. SLAPKA, aa 127-132. By constructing a series of point mutations, the dominant residues S127, L128, A129, P130, and A132 of PD-1 were further validated by western blot analysis, biolayer interferometry, and flow cytometry. Structural analysis showed that the epitope is partially within the binding interface of PD-1 and PD-L1, and this epitope also partially overlaps with that of nivolumab and pembrolizumab. These results demonstrate that sintilimab can attenuate PD-1 activation by directly competing with the interaction between PD-1 and PD-L1 through binding with the key residues of the FG loop on PD-1. This study also demonstrates the high efficiency and accuracy of AbMap for determining the binding epitope of therapeutic antibodies.


Assuntos
Anticorpos Monoclonais Humanizados/química , Antineoplásicos Imunológicos/química , Mapeamento de Epitopos , Epitopos/química , Receptor de Morte Celular Programada 1/química , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos/imunologia , Humanos , Receptor de Morte Celular Programada 1/imunologia
13.
Mol Cell Proteomics ; 16(12): 2243-2253, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018126

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Proteômica/métodos , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Grupo dos Citocromos b/química , Ferritinas/química , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Proteínas Ribossômicas/química , Células THP-1
14.
Mol Cell Proteomics ; 16(8): 1491-1506, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572091

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/metabolismo , Proteínas de Bactérias/genética , Parede Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteoma/genética , Proteômica , Transdução de Sinais
16.
Proteomics ; 17(11)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28394504

RESUMO

O-GalNAc glycosylation is the initial step of the mucin-type O-glycosylation. In humans, it is catalyzed by a family of 20 homologous UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). So far, there is very limited information on their protein substrate specificities. In this study, we developed an on-chip ppGalNAc-Ts assay that could rapidly and systematically identify the protein substrates of each ppGalNAc-T. In detail, we utilized a human proteome microarray as the protein substrates and UDP-GalNAz as the nucleotide sugar donor for click chemistry detection. From a total of 16 368 human proteins, we identified 570 potential substrates of ppGalNAc-T1, T2, and T3. Among them, 128 substrates were overlapped, while the rest were isoform specific. Further cluster analysis of these substrates showed that the substrates of ppGalNAc-T1 had a closer phylogenetic relationship with that of ppGalNAc-T3 compared with ppGalNAc-T2, which was consistent with the topology of the phylogenetic tree of these ppGalNAc-Ts. Taken together, our microarray-based enzymatic assay comprehensively reveals the substrate profile of the ppGalNAc-T1, T2, and T3, which not only provides a plausible explanation for their partial functional redundancy as reported, but clearly implies some specialized roles of each enzyme in different biological processes.


Assuntos
Azidas/análise , Ensaios Enzimáticos/métodos , N-Acetilgalactosaminiltransferases/análise , Análise Serial de Proteínas/métodos , Proteoma/análise , Uridina Difosfato N-Acetilgalactosamina/análogos & derivados , Azidas/metabolismo , Células HEK293 , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Isoformas de Proteínas , Especificidade por Substrato , Uridina Difosfato N-Acetilgalactosamina/análise , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
17.
Ann Hum Genet ; 79(3): 173-87, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25875728

RESUMO

We attempted to systematically elucidate the association between monocyte chemoattractant protein-1 (MCP-1) -2518A>G polymorphism and risk of coronary artery disease (CAD). Eligible studies were identified through PubMed, EBSCO, and Web of Science Databases. The magnitude of MCP-1 polymorphism effect and its possible mode of action on CAD were estimated. The odds ratio (OR) with 95% confidence intervals (CI) were pooled in a specific genetic model to assess the association. A total of 21 studies were involved. There was significant gene effect on CAD risk in the overall population (likelihood ratio test: p < 0.0001). Patients with GG and AG genotypes had 1.435 (95% CI: 1.183-1.740) and 1.087 (95% CI: 1.008-1.172) times higher risk of CAD than those with AA genotype. These gene effects suggested a recessive model to be appropriate. The pooled OR was 1.362 (95% CI: 1.137-1.631; puncorrected = 0.001, pFDR = 0.005) in the recessive model. In the ethnicity-stratified analysis, significant association was observed in the Caucasian population (OR = 1.492; 95% CI: 1.106-2.014; puncorrected = 0.009, pFDR = 0.015), whereas no statistical significant association was detected in the Asian population (adjusted p = 0.124). The results suggested that MCP-1 -2518A>G polymorphism may be associated with susceptibility to CAD, especially in Caucasians.


Assuntos
Quimiocina CCL2/genética , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Polimorfismo Genético , Alelos , Povo Asiático/genética , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Modelos Genéticos , Razão de Chances , Fatores de Risco , População Branca/genética
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38718846

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), is characteristic by a heterogeneous tumor microenvironment and gene mutations, conveys a dismal prognosis and low response to chemotherapy and immunotherapy. Here, we found that checkpoint suppressor 1 (CHES1) served as a tumor repressor in PDAC and was associated with patient prognosis. Functional experiments indicated that CHES1 suppressed the proliferation and invasion of PDAC by modulating cellular senescence. To further identify the downstream factor of CHES1 in PDAC, label-free quantitative proteomics analysis was conducted, which showed that the oncogenic Aldo-keto reductase 1B10 (AKR1B10) was transcriptionally repressed by CHES1 in PDAC. And AKR1B10 facilitated the malignant activity and repressed senescent phenotype of PDAC cells. Moreover, pharmaceutical inhibition of AKR1B10 with Oleanolic acid (OA) significantly induced tumor regression and sensitized PDAC cells to gemcitabine, and this combined therapy did not cause obvious side effects. Rescued experiments revealed that CHES1 regulated the tumorigenesis and gemcitabine sensitivity through AKR1B10-mediated senescence in PDAC. In summary, this study revealed that the CHES1/AKR1B10 axis modulated the progression and cellular senescence in PDAC, which might provide revenues for drug-targeting and senescence-inducing therapies for PDAC.


Assuntos
Aldeído Redutase , Aldo-Ceto Redutases , Carcinoma Ductal Pancreático , Senescência Celular , Gencitabina , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/antagonistas & inibidores , Aldo-Ceto Redutases/metabolismo , Aldo-Ceto Redutases/genética , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico
20.
Adv Healthc Mater ; : e2400204, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855966

RESUMO

Herein, a ccRCC targeting nanodrug is designed to enhance chemodynamic therapy (CDT) as well as activate cuproptosis and tumor immunotherapy via ccRCC cell membrane modifying CuO@Gd2O3 yolk-like particles (CGYL) loaded with lactate oxidase (LOx) (mCGYL-LOx). Benefiting from the homologous targeting effect of Renca cell membranes, the mCGYS-LOx can be effectively internalized by Renca cells, open the "gate", and then release LOx and copper (Cu) ions. LOx can catalyze excessive lactate in Renca cells into H2O2, following that the produced H2O2 is further converted by Cu ions to the highly toxic ·OH, contributing to tumor CDT. Meanwhile, the excessive Cu ions effectively trigger tumor cuproptosis. These synergistic effects induce the release of damage associated molecular patterns (DAMPs) and activate immunogenic cell death (ICD), leading to DC maturation and infiltration of immune effector cells. Moreover, LOx-mediated lactate consumption downregulates the expression of PD-L1, crippling tumor immune escape. In addition, the mCGYL-LOx improves T1-weighted MRI signal, allowing for accurate diagnosis of ccRCC. This study demonstrates that the mCGYL-LOx has great potential for improving therapy of ccRCC via the synergistic actions of CDT and cuproptosis as well as immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA