Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 593(7857): 56-60, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953409

RESUMO

Exciting phenomena may emerge in non-centrosymmetric two-dimensional electronic systems when spin-orbit coupling (SOC)1 interplays dynamically with Coulomb interactions2,3, band topology4,5 and external modulating forces6-8. Here we report synergetic effects between SOC and the Stark effect in centrosymmetric few-layer black arsenic, which manifest as particle-hole asymmetric Rashba valley formation and exotic quantum Hall states that are reversibly controlled by electrostatic gating. The unusual findings are rooted in the puckering square lattice of black arsenic, in which heavy 4p orbitals form a Brillouin zone-centred Γ valley with pz symmetry, coexisting with doubly degenerate D valleys of px origin near the time-reversal-invariant momenta of the X points. When a perpendicular electric field breaks the structure inversion symmetry, strong Rashba SOC is activated for the px bands, which produces spin-valley-flavoured D± valleys paired by time-reversal symmetry, whereas Rashba splitting of the Γ valley is constrained by the pz symmetry. Intriguingly, the giant Stark effect shows the same px-orbital selectiveness, collectively shifting the valence band maximum of the D± Rashba valleys to exceed the Γ Rashba top. Such an orchestrating effect allows us to realize gate-tunable Rashba valley manipulations for two-dimensional hole gases, hallmarked by unconventional even-to-odd transitions in quantum Hall states due to the formation of a flavour-dependent Landau level spectrum. For two-dimensional electron gases, the quantization of the Γ Rashba valley is characterized by peculiar density-dependent transitions in the band topology from trivial parabolic pockets to helical Dirac fermions.

2.
Small ; 19(33): e2300964, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066740

RESUMO

The long-range magnetic ordering in frustrated magnetic systems is stabilized by coupling magnetic moments to various degrees of freedom, for example, by enhancing magnetic anisotropy via lattice distortion. Here, the unconventional spin-lattice coupled metamagnetic properties of atomically-thin CrOCl, a van der Waals antiferromagnet with inherent magnetic frustration rooted in the staggered square lattice, are reported. Using temperature- and angle-dependent tunneling magnetoconductance (TMC), in complementary with magnetic torque and first-principles calculations, the antiferromagnetic (AFM)-to-ferrimagnetic (FiM) metamagnetic transitions (MTs) of few-layer CrOCl are revealed to be triggered by collective magnetic moment flipping rather than the established spin-flop mechanism, when external magnetic field (H) enforces a lattice reconstruction interlocked with the five-fold periodicity of the FiM phase. The spin-lattice coupled MTs are manifested by drastic jumps in TMC, which show anomalous upshifts at the transition thresholds and persist much higher above the AFM Néel temperature. While the MTs exhibit distinctive triaxial anisotropy, reflecting divergent magnetocrystalline anisotropy of the c-axis AFM ground state, the resulting FiM phase has an a-c easy plane in which the magnetization axis is freely rotated by H. At the 2D limit, such a field-tunable FiM phase may provide unique opportunities to explore exotic emergent phenomena and novel spintronics devices.

3.
J Am Chem Soc ; 140(12): 4391-4400, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29494136

RESUMO

We report a new quasi-one-dimensional compound KMn6Bi5 composed of parallel nanowires crystallizing in a monoclinic space group C2/ m with a = 22.994(2) Å, b = 4.6128(3) Å, c = 13.3830(13) Å and ß = 124.578(6)°. The nanowires are infinite [Mn6Bi5]- columns each of which is composed of a nanotube of Bi atoms acting as the cladding with a nanorod of Mn atoms located in the central axis of the nanotubes. The nanorods of Mn atoms inside the Bi cladding are stabilized by Mn-Mn bonding and are defined by distorted Mn-centered cluster icosahedra of Mn13 sharing their vertices along the b axis. The [Mn6Bi5]- nanowires are linked with weak internanowire Bi-Bi bonds and charge balanced with K+ ions. The [Mn6Bi5]- nanowires were directly imaged by high-resolution transmission electron microscopy and scanning transmission electron microscopy. Magnetic susceptibility studies show one-dimensional characteristics with an antiferromagnetic transition at ∼75 K and a small average effective magnetic moment (1.56 µB/Mn for H ∥ b and 1.37 µB/Mn for H ⊥ b) of Mn from Curie-Weiss fits above 150 K. Specific heat measurements reveal an electronic specific heat coefficient γ of 6.5(2) mJ K-2(mol-Mn)-1 and a small magnetic entropy change Δ Smag ≈ 1.6 J K-1 (mol-Mn)-1 across the antiferromagnetic transition. In contrast to a metallic resistivity along the column, the resistivity perpendicular to the column shows a change from a semiconducting behavior at high temperatures to a metallic one at low temperatures, indicating an incoherent-to-coherent crossover of the intercolumn tunneling of electrons.

4.
Nano Lett ; 17(5): 3035-3039, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28415840

RESUMO

Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

5.
J Am Chem Soc ; 138(7): 2170-3, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26853632

RESUMO

We report the first nitrogen-containing iron-pnictide superconductor ThFeAsN, which is synthesized by a solid-state reaction in an evacuated container. The compound crystallizes in a ZrCuSiAs-type structure with the space group P4/nmm and lattice parameters a = 4.0367(1) Å and c = 8.5262(2) Å at 300 K. The electrical resistivity and dc magnetic susceptibility measurements indicate superconductivity at 30 K for the nominally undoped ThFeAsN.

6.
Phys Rev Lett ; 116(25): 257003, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391745

RESUMO

Recently, theory has predicted a Majorana zero mode (MZM) to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MZM. Here, spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe SSAR of MZMs in a topological superconductor of the Bi_{2}Te_{3}/NbSe_{2} heterostructure. The zero-bias peak of the tunneling differential conductance at the vortex center is observed substantially higher when the tip polarization and the external magnetic field are parallel rather than antiparallel to each other. This spin dependent tunneling effect provides direct evidence of MZM and reveals its magnetic property in addition to the zero energy modes. Our work will stimulate MZM research on these novel physical properties and, hence, is a step towards experimental study of their statistics and application in quantum computing.

7.
Nat Mater ; 13(8): 777-81, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24859644

RESUMO

A quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy-fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement. To understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds. Here we show that a nickel oxypnictide, CeNiAsO, exhibits a heavy-fermion antiferromagnetic quantum critical point as a function of either pressure or P/As substitution. At the quantum critical point, non-Fermi-liquid behaviour appears, which is accompanied by a divergent effective carrier mass. Across the quantum critical point, the low-temperature Hall coefficient undergoes a rapid sign change, suggesting a sudden jump of the Fermi surface and a destruction of the Kondo effect. Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial in the search for high-temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality in strongly correlated electron systems.

8.
Phys Rev Lett ; 114(1): 017001, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615497

RESUMO

Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing. They are predicted to exist in a vortex core of superconducting topological insulators. However, it is extremely difficult to distinguish them experimentally from other quasiparticle states for the tiny energy difference between Majorana fermions and these states, which is beyond the energy resolution of most available techniques. Here, we circumvent the problem by systematically investigating the spatial profile of the Majorana mode and the bound quasiparticle states within a vortex in Bi(2)Te(3) films grown on a superconductor NbSe(2). While the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it splits off at a finite distance ∼20 nm away from the vortex center in Bi(2)Te(3). This unusual splitting behavior has never been observed before and could be possibly due to the Majorana fermion zero mode. While the Majorana mode is destroyed by the interaction between vortices, the zero bias peak splits as a conventional superconductor again. This work provides self-consistent evidences of Majorana fermions and also suggests a possible route to manipulating them.

9.
J Am Chem Soc ; 136(4): 1284-7, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24428401

RESUMO

Superconductivity in low-dimensional compounds has long attracted much interest. Here we report superconductivity in a low-dimensional ternary telluride Ta4Pd3Te16 in which the repeating layers contain edge-sharing octahedrally coordinated PdTe2 chains along the crystallographic b axis. Measurements of electrical resistivity, magnetic susceptibility and specific heat on the Ta4Pd3Te16 crystals, grown via a self-flux method, consistently demonstrate bulk superconductivity at 4.6 K. Further analyses of the data indicate significant electron-electron interaction, which allows electronic Cooper pairing in the present system.

10.
J Am Chem Soc ; 136(43): 15386-93, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25314008

RESUMO

We have synthesized a novel europium bismuth sulfofluoride, Eu3Bi2S4F4, by solid-state reactions in sealed evacuated quartz ampules. The compound crystallizes in a tetragonal lattice (space group I4/mmm, a = 4.0771(1) Å, c = 32.4330(6) Å, and Z = 2), in which CaF2-type Eu3F4 layers and NaCl-like BiS2 bilayers stack alternately along the crystallographic c axis. There are two crystallographically distinct Eu sites, Eu(1) and Eu(2) at the Wyckoff positions 4e and 2a, respectively. Our bond valence sum calculation, based on the refined structural data, indicates that Eu(1) is essentially divalent, while Eu(2) has an average valence of ∼ +2.64(5). This anomalous Eu valence state is further confirmed and supported, respectively, by Mössbauer and magnetization measurements. The Eu(3+) components donate electrons into the conduction bands that are mainly composed of Bi 6px and 6py states. Consequently, the material itself shows metallic conduction and superconducts at 1.5 K without extrinsic chemical doping.

11.
J Am Chem Soc ; 134(31): 12893-6, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22823744

RESUMO

We have synthesized a new oxypnictide, Ba2Ti2Fe2As4O, via a solid-state reaction under a vacuum. The compound crystallizes in a body-centered tetragonal lattice, which can be viewed as an intergrowth of BaFe2As2 and BaTi2As2O, thus containing Fe2As2 layers and Ti2O sheets. Bulk superconductivity at 21 K is observed after annealing the as-prepared sample at 773 K for 40 h. In addition, an anomaly in resistivity and magnetic susceptibility around 125 K is revealed, suggesting a charge- or spin-density wave transition in the Ti sublattice.

12.
Sci Adv ; 8(22): eabn4273, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658041

RESUMO

The recent discovery of superconductivity at the interfaces between KTaO3 and EuO (or LaAlO3) gives birth to the second generation of oxide interface superconductors. This superconductivity exhibits a strong dependence on the surface plane of KTaO3, in contrast to the seminal LaAlO3/SrTiO3 interface, and the superconducting transition temperature Tc is enhanced by one order of magnitude. For understanding its nature, a crucial issue arises: Is the formation of oxide interfaces indispensable for the occurrence of superconductivity? Exploiting ionic liquid (IL) gating, we are successful in achieving superconductivity at KTaO3(111) and KTaO3(110) surfaces with Tc up to 2.0 and 1.0 K, respectively. This oxide-IL interface superconductivity provides a clear evidence that the essential physics of KTaO3 interface superconductivity lies in the KTaO3 surfaces doped with electrons. Moreover, the controllability with IL technique paves the way for studying the intrinsic superconductivity in KTaO3.

13.
Adv Mater ; 34(6): e2108550, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871466

RESUMO

Intercalation and stacking-order modulation are two active ways in manipulating the interlayer interaction of transition metal dichalcogenides (TMDCs), which lead to a variety of emergent phases and allow for engineering material properties. Herein, the growth of Pb-intercalated TMDCs-Pb(Ta1+x Se2 )2 , the first 124-phase, is reported. Pb(Ta1+x Se2 )2 exhibits a unique two-step first-order structural phase transition at around 230 K. The transitions are solely associated with the stacking degree of freedom, evolving from a high-temperature (high-T) phase with ABC stacking and R3m symmetry to an intermediate phase with AB stacking and P3m1, and finally to a low-temperature (low-T) phase again with R3msymmetry, but with ACB stacking. Each step involves a rigid slide of building blocks by a vector [1/3, 2/3, 0]. Intriguingly, gigantic lattice contractions occur at the transitions on warming. At low-T, bulk superconductivity with Tc  ≈ 1.8 K is observed. The underlying physics of the structural phase transitions are discussed from first-principle calculations. The symmetry analysis reveals topological nodal lines in the band structure. The results demonstrate the possibility of realizing higher-order metal-intercalated phases of TMDCs and advance the knowledge of polymorphic transitions, and may inspire stacking-order engineering in TMDCs and beyond.

14.
ACS Appl Mater Interfaces ; 13(50): 60200-60208, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34883018

RESUMO

Magnetic tunnel junctions (MTJs), ferroelectric/antiferroelectric tunnel junctions (FTJs/AFTJs), and multiferroic tunnel junctions (MFTJs) have recently attracted significant interest for technological applications of nanoscale memory devices. Until now, most of them are based on perovskite oxide heterostructures with a relatively high resistance-area (RA) product and low resistance difference unfavorable for practical applications. The recent discovery of the two-dimensional (2D) van der Waals (vdW) ferroelectric (FE) and magnetic materials has opened a new route to realize tunnel junctions with high performance and atomic-scale dimensions. Here, using first-principles calculations, we propose a new type of 2D tunnel junction: an antiferroelectric magnetic tunnel junction (AFMTJ), which inherits the features of both MTJ and AFTJ. This AFMTJ is composed of monolayer CuInP2S6 (CIPS) sandwiched between 2D magnetic electrodes of CrSe2. The AFTJ with nonmagnetic electrodes of TiSe2 on both sides of CIPS and the asymmetric AFTJ with both CrSe2 and TiSe2 electrodes are also investigated. Based on quantum-mechanical modeling of the electronic transport, sizeable tunneling electroresistance effects and multiple nonvolatile resistance states are demonstrated. More importantly, a remarkably low RA product (less than 0.1 Ω·µm2) makes the proposed vdW AFMTJs superior to the conventional MFTJs in terms of their promising nonvolatile memory applications. Our calculations provide new guidance for the experiment and application of nanoscale memory devices.

15.
Materials (Basel) ; 14(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771819

RESUMO

In this study, we measure the in-plane transport properties of high-quality Ba(Fe0.914Co0.086)2As2 single crystals. Signatures of vortex unbinding Berezinskii-Kosterlitz-Thouless (BKT) transition are shown from both the conventional approach and the Fisher-Fisher-Huse dynamic scaling analysis, in which a characteristic Nelson-Kosterlitz jump is demonstrated. We also observe a non-Hall transverse signal exactly at the superconducting transition, which is explained in terms of guided motion of unbound vortices.

16.
ACS Appl Mater Interfaces ; 13(11): 13517-13523, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689259

RESUMO

Ferroelectricity exists in a variety of three- and two-dimensional materials and is of great significance for the development of electronic devices. However, the presence of ferroelectricity in one-dimensional materials is extremely rare. Here, we predict ferroelectricity in one-dimensional SbN and BiN nanowires. Their polarization strengths are 1 order of magnitude higher than ever reported values in one-dimensional structures. Moreover, we find that spontaneous spin polarization can be generated in SbN and BiN nanowires by moderate hole doping. This is the first time the coexistence of both ferroelectricity and ferromagnetism in a one-dimensional system has been reported. Our finding not only broadens the family of one-dimensional ferroelectric materials but also offers a promising platform for novel electronic and spintronic applications.

17.
Science ; 374(6573): 1381-1385, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709939

RESUMO

A sufficiently large supercurrent can close the energy gap in a superconductor and create gapless quasiparticles through the Doppler shift of quasiparticle energy caused by finite Cooper pair momentum. In this gapless superconducting state, zero-energy quasiparticles reside on a segment of the normal-state Fermi surface, whereas the remaining Fermi surface is still gapped. We use quasiparticle interference to image the field-controlled Fermi surface of bismuth telluride (Bi2Te3) thin films under proximity effect from the superconductor niobium diselenide (NbSe2). A small applied in-plane magnetic field induces a screening supercurrent, which leads to finite-momentum pairing on the topological surface states of Bi2Te3. We identify distinct interference patterns that indicate a gapless superconducting state with a segmented Fermi surface. Our results reveal the strong impact of finite Cooper pair momentum on the quasiparticle spectrum.

18.
Sci Bull (Beijing) ; 66(3): 243-249, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654329

RESUMO

Topological materials and topological phases have recently become a hot topic in condensed matter physics. In this work, we report an In-intercalated transition-metal dichalcogenide InxTaSe2 (named 112 system), a topological nodal-line semimetal in the presence of both charge density wave (CDW) and superconductivity. In the x = 0.58 sample, the 2×3 commensurate CDW (CCDW) and the 2×2 CCDW are observed below 116 and 77 K, respectively. Consistent with theoretical calculations, the spin-orbital coupling gives rise to two twofold-degenerate nodal rings (Weyl rings) connected by drumhead surface states, confirmed by angle-resolved photoemission spectroscopy. Our results suggest that the 2×2 CCDW ordering gaps out one Weyl ring in accordance with the CDW band folding, while the other Weyl ring remains gapless with intact surface states. In addition, superconductivity emerges at 0.91 K, with the upper critical field deviating from the s-wave behavior at low temperature, implying possibly unconventional superconductivity. Therefore, we think this type of the 112 system may possess abundant physical states and offer a platform to investigate the interplay between CDW, nontrivial band topology and superconductivity.

19.
J Am Chem Soc ; 132(20): 7069-73, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20426474

RESUMO

The new oxyselenide La(2)Co(2)Se(2)O(3), containing Co(2)O square-planar layers, has been successfully synthesized using solid-state reactions under vacuum. The compound crystallizes in space group I4/mmm with lattice parameters a = 4.0697(8) A and c = 18.419(4) A. Magnetic susceptibility measurements indicate an antiferromagnetic transition at approximately 220 K. The magnetic entropy associated with the transition is close to R ln 2, suggesting an unusual low-spin state for the Co(2+) ions. The as-prepared sample shows insulating behavior with room-temperature resistivity of approximately 10(7) ohms cm, which decreases by 4 orders of magnitude under a pressure of 7 GPa. Band structure calculations using the LSDA+U approach reproduce the insulating ground state with low spin for Co and suggest strong orbital polarization for the valence electrons near the Fermi level. It is also revealed that the spin and orbital degrees of freedom in the antiferromagnetic checkerboard spin-lattice are mutually coupled.

20.
Phys Rev Lett ; 105(20): 207003, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231257

RESUMO

We have measured the spin-polarized electron momentum density distributions of EuFe2(As0.73P0.27)2 by magnetic Compton scattering (MCS) measurements. For the first time, we show direct evidence of competing ferromagnetism and superconductivity (SC) on FeAs layers in this iron pnictide system. The MCS orbitalwise decomposition of the density distributions reveals that between 16 and 19 K, the spin-polarized Fe-3d character is enhanced (as the ferromagnetic character supersedes superconducting character), where the resistivity shows a maximum, reentrant SC-like peak, at 18 K. The spin polarization of the Fe-3d orbital, enhanced by ferromagnetic Eu ions, suppresses the SC around 18 K, while at other temperatures the system indeed exhibits SC where the Fe-3d spin polarization is suppressed or collapses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA