Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Res ; 231(Pt 2): 116163, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217128

RESUMO

As emerging contaminants, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been widely detected in various aqueous environments. For antibiotic resistance to be inhibited in the environment, it is essential to control ARB and ARGs. In this study, dielectric barrier discharge (DBD) plasma was used to inactivate antibiotic resistant Escherichia coli (AR E. coli) and remove ARGs simultaneously. Within 15 s of plasma treatment, 108 CFU/mL of AR E. coli were inactivated by 97.9%. The rupture of the bacterial cell membrane and the increase of intracellular ROS are the main reasons for the rapid inactivation of bacteria. Intracellular ARGs (i-qnrB, i-blaCTX-M, i-sul2) and integron gene (i-int1) decreased by 2.01, 1.84, 2.40, and 2.73 log after 15 min of plasma treatment, respectively. In the first 5 min of discharge, extracellular ARGs (e-qnrB, e-blaCTX-M, e-sul2) and integron gene (e-int1) decreased by 1.99, 2.22, 2.66, and 2.80 log, respectively. The results of the ESR and quenching experiments demonstrated that ·OH and 1O2 played important roles in the removal of ARGs. This study shows that DBD plasma is an effective technique to control ARB and ARGs in waters.


Assuntos
Escherichia coli , Genes Bacterianos , Escherichia coli/genética , Águas Residuárias , Antagonistas de Receptores de Angiotensina/farmacologia , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Bactérias
2.
Biofouling ; 34(8): 935-949, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30477343

RESUMO

This study systematically assessed the inactivation mechanism on Staphylococcus aureus biofilms by a N2 atmospheric-pressure plasma jet and the effect on the biofilm regeneration capacity from the bacteria which survived, and their progenies. The total bacterial populations were 7.18 ± 0.34 log10 CFU ml-1 in biofilms and these were effectively inactivated (>5.5-log10 CFU ml-1) within 30 min of exposure. Meanwhile, >80% of the S. aureus biofilm cells lost their metabolic capacity. In comparison, ∼20% of the plasma-treated bacteria entered a viable but non-culturable state. Moreover, the percentage of membrane-intact bacteria declined to ∼30%. Scanning electron microscope images demonstrated cell shrinkage and deformation post-treatment. The total amount of intracellular reactive oxygen species was observed to have significantly increased in membrane-intact bacterial cells with increasing plasma dose. Notably, the N2 plasma treatment could effectively inhibit the biofilm regeneration ability of the bacteria which survived, leading to a long-term phenotypic response and dose-dependent inactivation effect on S. aureus biofilms, in addition to the direct rapid bactericidal effect.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nitrogênio/farmacologia , Gases em Plasma/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Pressão Atmosférica , Viabilidade Microbiana/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
3.
Chemosphere ; 337: 139414, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423413

RESUMO

Over the past few decades, the frequent and excessive usage of pesticides has had detrimental effects on the soil and other habitats. In terms of removing organic contaminants from soil, non-thermal plasma has become one of the most competitive advanced oxidation methods. The study used dielectric barrier discharge (DBD) plasma to repair soil contaminated by butachlor (BTR). BTR degradation was investigated in actual soil under various experimental parameters. According to the results, DBD plasma treatment at 34.8 W destroyed 96.10% of BTR within 50 min, and this degradation was consistent with the model of first order kinetics. Boosting the discharge power, lowering the initial BTR concentration, using appropriate soil moisture content and air flow rate, and using oxygen as the working gas for discharge are all beneficial to the degradation of BTR. The changes in soil dissolved organic matter (DOM) before and after plasma treatment were assessed using a total organic carbon (TOC) analyzer. A Fourier transform infrared (FTIR) spectroscopy and an Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS) were employed to investigate the degradation of BTR. A wheat growth test showed that the best growth was achieved at 20 min of plasma soil remediation, but too long treatment would lower soil pH and thus affect wheat growth.


Assuntos
Solo , Espectrometria de Massas em Tandem , Cromatografia Líquida
4.
J Environ Public Health ; 2022: 3711900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832209

RESUMO

The evolution of media technology has not only changed readers' reading ways and reading habits but also tried to reshape their social behaviour. From the perspective of sociology of sustainable knowledge, this essay explores the impacts of technological change on reading through the framework of activity theory. It is found that digital reading is of increasing characteristics of "front stage" performance and reading anxiety in society, and sustainable knowledge anxiety began to spread. The research shows that the existing digital reading mode is actually the consumption of media, which is not conducive to the transmission and production of sustainable knowledge. Also, with the further development of technology, reading will open up a new chapter. The wisdom of human symbiosis will be infinitely stored and strive toward the era of global brain, which will help to better inherit sustainable knowledge and activate the vitality of sustainable knowledge production.


Assuntos
Leitura , Sociologia , Humanos
5.
Environ Sci Pollut Res Int ; 29(51): 77771-77787, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35687287

RESUMO

Carbamazepine (CBZ) is a typical psychotropic pharmaceutical which is one of the most commonly detected persistent pharmaceuticals in the environment. The degradation of CBZ in the aqueous solution was studied by a direct current (DC) gas-liquid phase discharge plasma combined with different catalysts (H2O2 or Fe2+) in this study. The concentrations of reactive species (H2O2, O3, and NO3-) and •OH radical yield in the liquid were measured during the discharge process. The various parameters that affect the degradation of CBZ, such as discharge powers, initial concentrations, initial pH values, and addition of catalysts, were investigated. The energy efficiency was 25.2 mg·kW-1·h-1 at 35.7 W, and the discharge power at 35.7 W was selected to achieve the optimal balance on the degradation effect and energy efficiency. Both acidic and alkaline solution conditions were conducive to promoting the degradation of CBZ. Both H2O2 and Fe2+ at low concentration (10-100 mg/L of Fe2+, 0.05-2.0 mmol/L of H2O2) were observed contributing to the improvement of the CBZ degradation rate, while the promotional effect of CBZ degradation was weakened even inhibition would occur at high concentrations (100-200 mg/L of Fe2+, 2.0-5.0 mmol/L of H2O2). The degradation rate of CBZ was up to 99.1%, and the total organic carbon (TOC) removal efficiency of CBZ was up to 67.1% in the plasma/Fe2+ (100 mg/L) system at 48 min, which suggested that high degradation rate and mineralization efficiency on CBZ could be achieved by employing Fe2+ as a catalyst. Based on the intermediate products identified by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS), the possible degradation pathways were proposed. Finally, the growth inhibition assay with Escherichia coli (E. coli) showed that the toxicity of plasma/Fe2+-treated CBZ solution decreased and a relatively low solution toxicity could be achieved. Thus, the plasma/catalyst could be an effective technology for the degradation of pharmaceuticals in aqueous solutions.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Carbamazepina/química , Carbono , Cromatografia Líquida , Escherichia coli , Peróxido de Hidrogênio/química , Oxirredução , Preparações Farmacêuticas , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/química , Ferro
6.
Front Bioeng Biotechnol ; 8: 573777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042973

RESUMO

Surface-enhanced Raman scattering (SERS) is a useful tool for label-free analysis of bacteria at the single cell level. However, low reproducibility limits the use of SERS. In this study, for the sake of sensitive and reproducible Raman spectra, we optimized the methods for preparing silver nanoparticles (AgNPs) and depositing AgNPs onto a cell surface. We found that fast dropwise addition of AgNO3 into the reductant produced smaller and more stable AgNPs, with an average diameter of 45 ± 4 nm. Compared with that observed after simply mixing the bacterial cells with AgNPs, the SERS signal was significantly improved after centrifugation. To optimize the SERS enhancement method, the centrifugal force, method for preparing AgNPs, concentration of AgNPs, ionic strength of the solution used to suspend the cells, and density of the cells were chosen as impact factors and optimized through orthogonal experiments. Finally, the improved method could generate sensitive and reproducible SERS spectra from single Escherichia coli cells, and the SERS signals primarily arose from the cell envelope. We further verified that this optimal method was feasible for the detection of low to 25% incorporation of 13C isotopes by the cells and the discrimination of different bacterial species. Our work provides an improved method for generating sensitive and reproducible SERS spectra.

7.
Hortic Res ; 7(1): 211, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33328464

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays multiple roles in plant development. However, whether endogenous H2S plays a role in fruit ripening in tomato is still unknown. In this study, we show that the H2S-producing enzyme L-cysteine desulfhydrase SlLCD1 localizes to the nucleus. By constructing mutated forms of SlLCD1, we show that the amino acid residue K24 of SlLCD1 is the key amino acid that determines nuclear localization. Silencing of SlLCD1 by TRV-SlLCD1 accelerated fruit ripening and reduced H2S production compared with the control. A SlLCD1 gene-edited mutant obtained through CRISPR/Cas9 modification displayed a slightly dwarfed phenotype and accelerated fruit ripening. This mutant also showed increased cysteine content and produced less H2S, suggesting a role of SlLCD1 in H2S generation. Chlorophyll degradation and carotenoid accumulation were enhanced in the SlLCD1 mutant. Other ripening-related genes that play roles in chlorophyll degradation, carotenoid biosynthesis, cell wall degradation, ethylene biosynthesis, and the ethylene signaling pathway were enhanced at the transcriptional level in the lcd1 mutant. Total RNA was sequenced from unripe tomato fruit treated with exogenous H2S, and transcriptome analysis showed that ripening-related gene expression was suppressed. Based on the results for a SlLCD1 gene-edited mutant and exogenous H2S application, we propose that the nuclear-localized cysteine desulfhydrase SlLCD1 is required for endogenous H2S generation and participates in the regulation of tomato fruit ripening.

8.
Bioelectrochemistry ; 121: 125-134, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29413862

RESUMO

The direct inactivation effects of an atmospheric pressure direct current (DC) air plasma against planktonic Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in aqueous solution are investigated in vitro. Upon plasma treatment, extensively analyses on cell culturability, metabolic capacity, membrane integrity, surface morphology, cellular proteins, nucleic acids and intracellular reactive oxygen species (ROS) for both bacterial species were carried out and significant antimicrobial effects observed. Compared with the cellular culturability, a sub-lethal viable but non-culturable (VBNC) state was induced while more S. aureus entered this state than E. coli. Damaged bacterial outer structures were observed and the total concentrations of cellular protein and nucleic acid decreased for both bacteria after plasma treatment. The plasma-induced aqueous reactive species (RS) and intracellular ROS might produce detrimental effects to the bacteria, while S. aureus was less susceptible to the discharge after a 20-min exposure compared to E. coli.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Gases em Plasma/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Pressão Atmosférica , Escherichia coli/citologia , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Plâncton/citologia , Plâncton/efeitos dos fármacos , Plâncton/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/citologia , Staphylococcus aureus/metabolismo , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
9.
Front Microbiol ; 9: 826, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755442

RESUMO

The molecular mechanism underlying the elimination of algal cells by fungal mycelia has not been fully understood. Here, we applied transcriptomic analysis to investigate the gene expression and regulation at time courses of Trametes versicolor F21a during the algicidal process. The obtained results showed that a total of 193, 332, 545, and 742 differentially expressed genes were identified at 0, 6, 12, and 30 h during the algicidal process, respectively. The gene ontology terms were enriched into glucan 1,4-α-glucosidase activity, hydrolase activity, lipase activity, and endopeptidase activity. The KEGG pathways were enriched in degradation and metabolism pathways including Glycolysis/Gluconeogenesis, Pyruvate metabolism, the Biosynthesis of amino acids, etc. The total expression levels of all Carbohydrate-Active enZYmes (CAZyme) genes for the saccharide metabolism were increased by two folds relative to the control. AA5, GH18, GH5, GH79, GH128, and PL8 were the top six significantly up-regulated modules among 43 detected CAZyme modules. Four available homologous decomposition enzymes of other species could partially inhibit the growth of algal cells. The facts suggest that the algicidal mode of T. versicolor F21a might be associated with decomposition enzymes and several metabolic pathways. The obtained results provide a new candidate way to control algal bloom by application of decomposition enzymes in the future.

10.
Sci Rep ; 5: 10031, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25992482

RESUMO

Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.


Assuntos
L-Lactato Desidrogenase/metabolismo , Gases em Plasma/química , Pressão Atmosférica , Dicroísmo Circular , Difusão Dinâmica da Luz , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Nitratos/química , Ozônio/química , Estrutura Secundária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA