Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Genomics ; 17 Suppl 7: 521, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556417

RESUMO

BACKGROUND: Ion Torrent and Ion Proton are semiconductor-based sequencing technologies that feature rapid sequencing speed and low upfront and operating costs, thanks to the avoidance of modified nucleotides and optical measurements. Despite of these advantages, however, Ion semiconductor sequencing technologies suffer much reduced sequencing accuracy at the genomic loci with homopolymer repeats of the same nucleotide. Such limitation significantly reduces its efficiency for the biological applications aiming at accurately identifying various genetic variants. RESULTS: In this study, we propose a Bayesian inference-based method that takes the advantage of the signal distributions of the electrical voltages that are measured for all the homopolymers of a fixed length. By cross-referencing the length of homopolymers in the reference genome and the voltage signal distribution derived from the experiment, the proposed integrated model significantly improves the alignment accuracy around the homopolymer regions. CONCLUSIONS: Besides improving alignment accuracy on homopolymer regions for semiconductor-based sequencing technologies with the proposed model, similar strategies can also be used on other high-throughput sequencing technologies that share similar limitations.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Sequências de Repetição em Tandem/genética , Teorema de Bayes , Variação Genética , Genoma , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA