Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Cardiovasc Pharmacol ; 80(3): 407-416, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853202

RESUMO

ABSTRACT: Cardiovascular disease is responsible for the largest number of deaths worldwide, and atherosclerosis is the primary cause. Apoptotic cell accumulation in atherosclerotic plaques leads to necrotic core formation and plaque rupture. Emerging findings show that the progression of atherosclerosis appears to suppress the elimination of apoptotic cells. Mechanistically, the reduced edibility of apoptotic cells, insufficient phagocytic capacity of phagocytes, downregulation of bridging molecules, and dysfunction in the polarization of macrophages lead to impaired efferocytosis in atherosclerotic plaques. This review focuses on the characteristics of efferocytosis in plaques and the therapeutic strategies aimed at promoting efferocytosis in atherosclerosis, which would provide novel insights for the development of antiatherosclerotic drugs based on efferocytosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Apoptose/fisiologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Humanos , Macrófagos/metabolismo , Fagocitose/fisiologia , Placa Aterosclerótica/metabolismo
2.
Nano Lett ; 21(22): 9736-9745, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34748340

RESUMO

Cholesterol crystals (CCs), originally accumulating in the lysosome of cholesterol-laden cells, can aggravate the progression of atherosclerosis. ß-cyclodextrin (CD) is a potent cholesterol acceptor or CC solubilizer. However, the random extraction of cholesterol impedes the in vivo application of CD for removing lysosomal CCs. Here, we exploit poly-ß-cyclodextrin (pCD) as a lysosomal CC solubilizer and dextran sulfate grafted with benzimidazole (BM) as a pH-sensitive switch (pBM) to self-assemble into a supramolecular nanoassembly (pCD/pBM-SNA). The CD cavity in pCD/pBM-SNA can be efficiently sealed by hydrophobic BM at pH 7.4 (OFF). After it enters the lysosome, pCD/pBM-SNA disassembles, recovers the CD cavity to dissolve CCs into free cholesterol due to the protonation of BM (ON), and reduces CCs, finally enhancing the cholesterol efflux and promoting atherosclerosis regression. Our findings provide an "OFF-ON" tactic to remove lysosomal CCs for antiatherosclerosis as well as other diseases such as Niemann-Pick type C diseases with excessive cholesterol accumulation in the lysosome.


Assuntos
beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Colesterol , Concentração de Íons de Hidrogênio , Lisossomos , beta-Ciclodextrinas/farmacologia
3.
Nano Lett ; 19(7): 4470-4477, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31244234

RESUMO

Neutrophils are implicated in numerous inflammatory diseases, and especially in acute ischemic stroke (AIS). The unchecked migration of neutrophils into cerebral ischemic regions, and their subsequent release of reactive oxygen species, are considered the primary causes of reperfusion injury following AIS. Reducing the infiltration of inflammatory neutrophils may therefore be a useful therapy for AIS. Here, inspired by the specific cell-cell recognition that occurs between platelets and inflammatory neutrophils, we describe platelet-mimetic nanoparticles (PTNPs) that can be used to directly recognize, intervene, and monitor inflammatory neutrophils in the AIS treatment and therapeutic evaluation. We demonstrate that PTNPs, coloaded with piceatannol, a selective spleen tyrosine kinase inhibitor, and superparamagnetic iron oxide (SPIO), a T2 contrast agent, can successfully recognize adherent neutrophils via platelet membrane coating. The loaded piceatannol could then be delivered to adherent neutrophils and detach them into circulation, thus decreasing neutrophil infiltration and reducing infarct size. Moreover, when coupled with magnetic resonance imaging, internalized SPIO could be used to monitor the inflammatory neutrophils, associated with therapeutic effects, in real time. This approach is an innovative method for both the treatment and therapeutic evaluation of AIS, and provides new insights into how to treat and monitor neutrophil-associated diseases.


Assuntos
Materiais Biomiméticos , Plaquetas , Isquemia Encefálica , Rastreamento de Células , Meios de Contraste , Nanopartículas de Magnetita , Neutrófilos/metabolismo , Estilbenos , Acidente Vascular Cerebral , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/metabolismo , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Células RAW 264.7 , Estilbenos/química , Estilbenos/farmacocinética , Estilbenos/farmacologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/metabolismo
4.
Small ; 15(5): e1804191, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30549431

RESUMO

Gastric cancer remains one of the most lethal cancers with high incidence and mortality worldwide. The majority of gastric cancer patients are those who have first been diagnosed in advanced stage, in which the standard chemo-radiotherapy produces limited benefit along with severe general toxicity, thus the demand for improved therapeutic efficacy and decreased side effects drives the development of novel therapeutic strategies. Here, a neoadjuvant chemotherapy based on Abraxane/human neutrophils (NEs) cytopharmaceuticals with radiotherapy is presented for effective cancer treatment. Human NEs, the most abundant white blood cells in peripheral blood, are developed to carry Abraxane, the commercial albumin-bound paclitaxel nanoparticle, to form cytopharmaceuticals (Abraxane/NEs) which have been confirmed to maintain the intrinsic functions of human NEs. The modest radiation is applied not only to exert tumor disruption, but also to increase the release of inflammatory factors which guide the NEs homing to the tumoral sites. These amplified inflammatory factors at tumor sites excessively activate Abraxane/NEs to form neutrophil extracellular traps, along with a burst release of Abraxane to induce superior tumor suppression. This adjuvant chemo-radiotherapy based on cytopharmaceuticals may provide new opportunities for advanced cancer treatment, which reveals the huge clinical potential of human neutrophils as drug delivery vectors.


Assuntos
Paclitaxel Ligado a Albumina/uso terapêutico , Neutrófilos/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/radioterapia , Paclitaxel Ligado a Albumina/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neutrófilos/efeitos dos fármacos
5.
Mol Pharm ; 16(7): 3109-3120, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082253

RESUMO

Given the multiple interactions between neutrophils (NEs) and atherosclerosis (AS), in this study, we exploited NEs as cellular vehicles loaded with cationic liposomes for actively targeting atherosclerotic sites. The cellular vehicles based on NEs possess efficient internalization of cationic liposomes and sensitive response to the chemotaxis of atherosclerotic inflammatory cells, which ultimately realize the targeted delivery of the cargos into the target cells in vitro. Moreover, these effects also translated to significant enhancement of the accumulation of NEs' cargos into the atherosclerotic plaque in vivo after administering NE vehicles to the AS animal model. Consequently, cellular vehicles based on NEs could be a novel strategy for targeted delivery of payloads into atherosclerotic plaque, which would facilitate theranostics for AS and the development of anti-AS drugs to manage the disease.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Neutrófilos/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Linhagem Celular , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Nanomedicina/métodos , Tamanho da Partícula , Distribuição Tecidual
6.
Bioorg Med Chem Lett ; 26(12): 2936-2941, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27130359

RESUMO

Janus kinase 2 (JAK2) plays an essential role in the signaling of hormone-like cytokines and growth factors, which has been convinced as an important target of myeloproliferative neoplasms (MPNs) therapy. In this study, a series of novel pyrrolo[2,3-d]pyrimidine-phenylamide hybrids were designed and synthesized as potential JAK2 inhibitors through hybridization strategy. In vitro biological studies showed that most of these compounds exhibited potent activity against JAK2. Especially, compound 16c was identified as a suitable lead compound, which showed favorable pharmacokinetic profiles in rats (F=73.57%), excellent in vitro efficacy against erythroleukemic cells (TF-1, IC50=0.14µM), and high selectivity for JAK2 (IC50=6nM with >97-fold selectivity vs JAK3).


Assuntos
Amidas/farmacologia , Desenho de Fármacos , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Amidas/administração & dosagem , Amidas/química , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 2/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Pirimidinas/administração & dosagem , Pirimidinas/química , Pirróis/administração & dosagem , Pirróis/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
7.
J Am Chem Soc ; 137(18): 6000-10, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25869911

RESUMO

A novel "collaborative assembly" approach was reported for the synthesis of an siRNA delivery system via a combination of an electrostatically driven physical assembly and a facile click reaction-mediated chemical assembly, which showed various advantages of more safety, efficiency, and flexibility over the conventional approach that is only based on the physical assembly. This strategy remained a high cationic property of lipid-based complex for high siRNA loading capacity. The direct chemical modification of a model polyanion, hyaluronic acid (HA) on the cationic complex via click chemistry shielded the positive charge of complex without affecting the siRNA binding, which reduced the toxicity and enhanced the blood stability of the complex. In addition, the incorporated polyanion might be prefunctionalized, which endued the carrier with better biological characteristics such as long circulating or tumor targeting. We demonstrated that the obtained lipid-polymer hybrid nanoparticle (RSC-HA) using collaborative assembly presented greater in vivo stability in the blood for efficient tumor targeting than the physically assembled RSC/HA in which HA was physically adsorbed on the complex. After endocytosis into the cells, the protection of RSC-HA on siRNA turned off, while the release of siRNA induced by the intracellular signals for enhanced gene-silencing capacity. This combination of physical and chemical assemblies provides an efficient strategy for the exploitation of safe, stable, and functionalized siRNA delivery systems.


Assuntos
Técnicas de Transferência de Genes , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular Tumoral , Inativação Gênica/efeitos dos fármacos , Humanos , Lipídeos/química , Camundongos , Estrutura Molecular , Nanopartículas/química , Neoplasias Experimentais/patologia , Polímeros/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Ratos
9.
Angew Chem Int Ed Engl ; 53(24): 6253-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24740532

RESUMO

To achieve deep tumor penetration of large-sized nanoparticles (NPs), we have developed a reversible swelling-shrinking nanogel in response to pH variation for a sequential intra-intercellular NP delivery. The nanogel had a crosslinked polyelectrolyte core, consisting of N-lysinal-N'-succinyl chitosan and poly(N-isopropylacrylamide), and a crosslinked bovine serum albumin shell, which was able to swell in an acidic environment and shrink back under neutral conditions. The swelling resulted in a rapid release of the encapsulated chemotherapeutics in the cancer cells for efficient cytotoxicity. After being liberated from the dead cells, the contractive nanogel could infect neighboring cancer cells closer to the center of the tumor tissue.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas
10.
Acta Biomater ; 173: 470-481, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984628

RESUMO

Neutrophil extracellular traps (NETs) play a crucial role in the formation of vulnerable plaques and the development of atherosclerosis. Alleviating the pathological process of atherosclerosis by efficiently targeting neutrophils and inhibiting the activity of neutrophil elastase to inhibit NETs is relatively unexplored and is considered a novel therapeutic strategy with clinical significance. Sivelestat (SVT) is a second-generation competitive inhibitor of neutrophil elastase with high specificity. However, therapeutic effect of SVT on atherosclerosis is restricted because of the poor half-life and the lack of specific targeting. In this study, we construct a plaque-targeting and neutrophil-hitchhiking liposome (cRGD-SVT-Lipo) to improve the efficacy of SVT in vivo by modifying the cRGD peptide onto SVT loaded liposome, which was based on the interaction between cRGD peptide and integrin ανß3 on the surface of cells in blood and plaque, including epithelial cell, macrophage and neutrophils. The cRGD-SVT-Lipo could actively tend to or hitchhike neutrophils in situ to reach atherosclerotic plaque, which resulted in enhanced atherosclerotic plaque delivery. The cRGD-SVT-Lipo could also reduce plaque area, stabilize plaque, and ultimately alleviate atherosclerosis progression through efficiently inhibiting the activity of neutrophil elastase in atherosclerotic plaque. Therefore, this study provides a basis and targeting strategy for the treatment of neutrophil-related diseases. STATEMENT OF SIGNIFICANCE: Neutrophil extracellular traps (NETs)-inhibiting is a prospective therapeutic approach for atherosclerosis but has received little attention. The NETs can be inhibited by elastase-restraining. In this work, an intriguing system that delivers Sivelestat (SVT), a predominantly used neutrophil elastase inhibitor with poor targeting capability, is designed to provide the drug with plaque-targeting and neutrophil-hitchhiking capability. The result suggests that this system can effectively hinder the formation of NETs and delay the progression of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/tratamento farmacológico , Neutrófilos , Elastase de Leucócito , Lipossomos , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia
11.
Adv Sci (Weinh) ; 11(25): e2401100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634209

RESUMO

Due to multidimensional complexity of solid tumor, development of rational T-cell combinations and corresponding formulations is still challenging. Herein, a triple combination of T cells are developed with Indoleamine 2,3-dioxygenase inhibitors (IDOi) and Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). To maximize synergism, a spatiotemporally controlled T-cell engineering technology to formulate triple drugs into one cell therapeutic, is established. Specifically, a sequentially responsive core-shell nanoparticle (SRN) encapsulating IDOi and CDK4/6i is anchored onto T cells. The yielded SRN-T cells migrated into solid tumor, and achieved a 1st release of IDOi in acidic tumor microenvironment (TME). Released IDOi restored tryptophan supply in TME, which activated effector T cells and inhibited Tregs. Meanwhile, 1st released core is internalized by tumor cells and degraded by glutathione (GSH), to realize a 2nd release of CDK4/6i, which induced up-regulated expression of C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5), and thus significantly increased tumor infiltration of T cells. Together, with an enhanced recruitment and activation, T cells significantly suppressed tumor growth, and prolonged survival of tumor-bearing mice. This study demonstrated rationality and superiority of a tri-drug combination mediated by spatiotemporally controlled cell-engineering technology, which provides a new treatment regimen for solid tumor.


Assuntos
Linfócitos T , Microambiente Tumoral , Animais , Camundongos , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Quinase 4 Dependente de Ciclina/metabolismo , Linhagem Celular Tumoral , Nanopartículas , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética
12.
ACS Nano ; 18(17): 11165-11182, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626338

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.


Assuntos
Aminopiridinas , Neoplasias Encefálicas , Glioblastoma , Microglia , Receptores de Antígenos Quiméricos , Glioblastoma/terapia , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/tratamento farmacológico , Animais , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Lipossomos/química , Pirróis/química , Pirróis/farmacologia , Imunoterapia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Imunoterapia Adotiva , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
13.
Eur J Med Chem ; 247: 115073, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603511

RESUMO

Successful T-cell based immunotherapy usually depends on the activation of T cells. Most of commonly used methods for assessing T cell activity rely on the antibody-based technology, which focus on detecting protein-centered activation markers, including CD25, cytokines and so on. However, these methods always involve tedious sample-preparation process, labor-consuming and costly, which could not be utilized in real-time detection. The T cell receptor (TCR) clustering is another kind of essential T cell activation marker on the membrane, which increases during the activation state of T cells. We herein developed a cholesterol derived aggregation-induced emission (AIE) fluorescent probe (R-TPE-PEG-Chol) for detecting T cell activation in real-time. Five probes were first designed and synthesized and among them COOH-TPE-PEG-Chol displayed the best imaging effects, which had no significant impact on the key physiological functions of T cells. In addition, we have proved that COOH-TPE-PEG-Chol was introduced onto the naïve T cell membrane in its molecularly dissolved form without fluorescent emission. While during T cell activation, the formation of TCR nanoclusters would induce aggregation of membrane cholesterol, which could provoke the fluorescence signal of the COOH-TPE-PEG-Chol due to the AIE characteristic. Moreover, the enhancement of the fluorescence intensity was positively related to the activation state of T cells. Our study demonstrated the concept of cholesterol-derived AIE fluorescent probes for deciphering the spatiotemporal arrangements of TCR on the membrane during T cell activation, and consequently provided a novel and complementary strategy for detecting T cell activation in real-time.


Assuntos
Colesterol , Polietilenoglicóis , Fluorescência , Receptores de Antígenos de Linfócitos T , Corantes Fluorescentes/farmacologia
14.
Acta Pharm Sin B ; 13(2): 787-803, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873164

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe synovial inflammation and cartilage damage. Despite great progress in RA therapy, there still lacks the drugs to completely cure RA patients. Herein, we propose a reprogrammed neutrophil cytopharmaceuticals loading with TNFα-targeting-siRNA (siTNFα) as an alternative anti-inflammatory approach for RA treatment. The loaded siTNFα act as not only the gene therapeutics to inhibit TNFα production by macrophages in inflamed synovium, but also the editors to reprogram neutrophils to anti-inflammatory phenotypes. Leveraging the active tendency of neutrophils to inflammation, the reprogrammed siTNFα/neutrophil cytopharmaceuticals (siTNFα/TP/NEs) can rapidly migrate to the inflamed synovium, transfer the loaded siTNFα to macrophages followed by the significant reduction of TNFα expression, and circumvent the pro-inflammatory activity of neutrophils, thus leading to the alleviated synovial inflammation and improved cartilage protection. Our work provides a promising cytopharmaceutical for RA treatment, and puts forward a living neutrophil-based gene delivery platform.

15.
J Control Release ; 359: 116-131, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263546

RESUMO

Effective extravasation of therapeutic agents into solid tumors still faces huge challenges. Since the doubted effectiveness of enhanced penetration and retention effect, first-generation neutrophil cytopharmaceuticals with encapsulated drugs have been developed to improve the drug accumulation in tumors based on the active chemotaxis and extravasation of neutrophils. Herein, a new generation of neutrophil cytopharmaceuticals with enhanced tumor-specific extravasation is reported to satisfy more complex clinical demands. This neutrophil cytopharmaceutical is obtained by anchoring vascular endothelial growth factor receptor 2 (VEGFR2)-targeting peptide K237 on neutrophil membrane after endocytosis of chemotherapeutics by neutrophils. Leveraging the cytokine-mediated active migration of neutrophils, the specific-recognition of K237 peptide to tumor vascular endothelium expedites the migration and enhances tight adhesion of neutrophils to vascular endothelium, thus improving the extravasation of therapeutic agents to target sites. Moreover, anti-angiogenesis effect from VEGFR2-blocking by K237 peptide achieves a cooperative tumor destruction with cytotoxic effects from released chemotherapeutics. This study demonstrates the great potential of enhanced proactive extravasation of cytopharmaceuticals via a cell-anchoring technology, leading to expedited drug infiltration and boosted therapeutic effects, which can be applied in other cell therapies to improve efficacy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Adesão Celular , Endotélio Vascular
16.
ACS Nano ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595464

RESUMO

Immune checkpoint inhibitors (ICIs) have displayed potential efficacy in triple-negative breast cancer (TNBC) treatment, while only a minority of patients benefit from ICI therapy currently. Although activation of the innate immune stimulator of interferon genes (STING) pathway potentiates antitumor immunity and thus sensitizes tumors to ICIs, the efficient tumor penetration of STING agonists remains critically challenging. Herein, we prepare a tumor-penetrating neotype neutrophil cytopharmaceutical (NEs@STING-Mal-NP) with liposomal STING agonists conjugating on the surface of neutrophils, which is different from the typical neutrophil cytopharmaceutical that loads drugs inside the neutrophils. We show NEs@STING-Mal-NP that inherit the merits of neutrophils including proactive tumor vascular extravasation and tissue penetration significantly boost the tumor penetration of STING agonists. Moreover, the backpacked liposomal STING agonists can be released in response to hyaluronidase rich in the tumor environment, leading to enhanced uptake by tumor-infiltrating immune cells and tumor cells. Thus, NEs@STING-Mal-NP effectively activate the STING pathway and reinvigorate the tumor environment through converting macrophages and neutrophils to antitumor phenotypes, promoting the maturation of dendritic cells, and enhancing the infiltration and tumoricidal ability of T cells. Specifically, this cytopharmaceutical displays a significant inhibition on tumor growth and prolongs the survival of TNBC-bearing mice when combined with ICIs. We demonstrate that neutrophils serve as promising vehicles for delivering STING agonists throughout solid tumors and the developed neutrophil cytopharmaceuticals with backpacked STING agonists exhibit huge potential in boosting the immunotherapy of ICIs.

17.
Adv Drug Deliv Rev ; 187: 114380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662610

RESUMO

Effective delivery of therapeutic modality throughout the tumorous nidus plays a crucial role in successful solid tumor treatment. However, conventional nanomedicines based on enhanced permeability and retention (EPR) effect have yielded limited delivery/therapeutic efficiency, due mainly to the heterogeneity of the solid tumor. Leukocytes, which could intrinsically migrate across the vessel wall and crawl through tissue interstitium in a self-deformable manner, have currently emerged as an alternative drug delivery vehicle. In this review, we start with the intrinsic properties of leukocytes (e.g., extravasation and crawling inside tumor), focusing on unveiling the conceptual rationality of leveraging leukocytes as EPR-independent delivery vehicles. Then we discussed various cargoes-loading/unloading strategies for leukocyte-based vehicles as well as their promising applications. This review aims to serve as an up-to-date compilation, which might provide inspiration for scientists in the field of drug delivery.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Excipientes , Humanos , Leucócitos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Permeabilidade
18.
Biomater Sci ; 11(1): 263-277, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36440740

RESUMO

Dendritic cells (DCs) that can prime antitumor responses show great potential in tumor immunotherapy, whereas the unsatisfactory effect which can be ascribed in part to the high expression of inhibitory cytokines, such as the suppressor of cytokine signaling 1 (SOCS1), restricts their application. Thus, silencing these genes in DCs is essential for DC-based therapy. However, safe and effective delivery of siRNA to DCs still faces challenges. Herein, we designed single-component lipid nanoparticles comprising a solely cationic lipid (OA2) for introducing siRNA into mouse DCs in order to inhibit the immunosuppressive gene and boost the effector responses of DC-based therapy. Compared to other multi-component lipid nanoparticles, single-component lipid nanoparticles are theoretically easy-to-control and detective, which is beneficial for future translation. We showed that the application of OA2 lipid nanoparticles significantly downregulated the expression of SOCS1 in DCs over 50%, compared with the commercial lipofectine2000. Besides, the treatment of OA2 lipid nanoparticles had no influence on the antigen capture of DCs. Thus, we fabricated a SOCS1-downregulated DC vaccine pulsed with Ova antigen and demonstrated that the antigen presentation and pro-inflammatory factor secretion ability of DCs were improved due to the SOCS1 downregulation, leading to an ameliorated immunosuppressive tumor microenvironment and finally exhibiting potent tumor prevention and suppression in B16-Ova tumor-bearing mice. Single-component lipid nanoparticles, which provide an available vector platform for siRNA delivery to primary DCs, appear to be a potent tool to engineer DCs and in turn boost DC-based tumor immunotherapy.


Assuntos
Neoplasias , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Imunoterapia , Neoplasias/metabolismo , Apresentação de Antígeno , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Dendríticas , Camundongos Endogâmicos C57BL , Microambiente Tumoral
19.
Adv Healthc Mater ; 11(3): e2101761, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811972

RESUMO

Circulating tumor cells (CTCs) are reported as the precursor of tumor metastases, implying that stifling CTCs would be beneficial for metastasis prevention. However, challenges remain for the application of therapies that aim at CTCs due to lack of effective CTC-targeting strategy and sensitive therapeutic agents. Herein, a general CTC-intervention strategy based on neutrophil cyto-pharmaceuticals is proposed for suppressing CTC colonization and metastasis formation. Breast cancer 4T1 cells are infused as the mimic CTCs, and 4T1 cells trapped are first elucidated in neutrophil extracellular traps (NETs) expressing high levels of hypoxia-inducible factor-1α (HIF-1α) due to NET formation and thus promoting tumor cell colonization through enhanced migration, invasion and stemness. After verifying HIF-1α as a potential target for metastasis prevention, living neutrophil cyto-pharmaceuticals (CytPNEs) loaded with HIF-1α inhibitor are fabricated to therapeutically inhibit HIF-1α. It is demonstrated that CytPNEs can specially convey the HIF-1α inhibitor to 4T1 cells according to the inflammatory chemotaxis of neutrophils and down-regulate HIF-1α, thereby inhibiting metastasis and prolonging the median survival of mice bearing breast cancer lung metastasis. The research offers a new perspective for understanding the mechanism of CTC colonization, and puts forward the strategy of targeted intervention of CTCs as a meaningful treatment for tumor metastasis.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos , Metástase Neoplásica/prevenção & controle , Neutrófilos , Preparações Farmacêuticas
20.
J Control Release ; 343: 457-468, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124127

RESUMO

Tumor metastasis is directly correlated to poor prognosis and high mortality. Circulating tumor cells (CTCs) play a pivotal role in metastatic cascades, of which CTC clusters is highly metastatic compared to single CTCs. Although platelets and neutrophils within the bloodstream could further exacerbate the pro-metastatic effect of single CTCs, the influence of platelets and neutrophils on CTC clusters mediated metastasis remains unclear. In this study, a pro-metastatic complex composed of CTC clusters, platelets and neutrophils, namely circulating tumor microemboli (CTM), was identified in vivo among different metastatic tumor, which was demonstrated with highly upregulation of hypoxia-inducible factor-1α (HIF-1α). While knock-out of HIF-1α or therapeutically downregulating of HIF-1α via HIF-1α inhibitor (BAY87-2243)-loaded neutrophil cyto-pharmaceuticals (PNEs) could efficiently restrain CTM mediated lung metastasis. The underlying mechanism of metastasis inhibition was attributed to the downregulation of HIF-1α-associated PD-L1, which would enhance immune response for inhibiting metastatic cells. Thus, our work here illustrates that hypoxia was an essential factor in promoting CTM colonization in lung. More importantly, we provide a promising strategy by targeted downregulation of HIF-1α in CTM via neutrophil cyto-pharmaceuticals for treatment of CTM mediated metastasis.


Assuntos
Embolia , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA