Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chemistry ; 30(30): e202400812, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38533748

RESUMO

Stabilization of hexaphyrin(1.0.1.0.1.0) (named "rosarin") in its 25π radical state is achieved using a hetero-bimetal-coordination strategy. The antiaromatic BF2 complex B-1 was first synthesized, and then rhodium ion was inserted into B-1 to produce the BF2/Rh(CO)2 mixed complex Rh-B-1 as a highly air-stable radical. The structures of B-1 and Rh-B-1 were determined by single-crystal X-ray diffractions, and the antiaromatic or radical character was identified by various spectroscopy evidence and theoretical calculations. Rh-B-1 exhibits excellent redox properties, enabling amphoteric aromatic-antiaromatic conversion to their 24/26π states. Compared to the 24/26π conjugation systems on the same skeleton, Rh-B-1 has the narrowest electrochemical and optical band gaps, with the longest absorption band at 1010 nm. The ring-current analysis reveals intense paratropic currents for B-1 and co-existing diatropic-paratropic currents for Rh-B-1. This hetero-bimetal-coordination system provides a novel platform for organic radical stabilization on porphyrinoids, showing the prospect of modulating ligand oxidation states through rational coordination design.

2.
Langmuir ; 40(9): 4927-4939, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377532

RESUMO

Serious water contamination induced by massive discharge of cadmium(II) ions is becoming an emergent environmental issue due to high toxicity and bioaccumulation; thus, it is extremely urgent to develop functional materials for effectively treating with Cd2+ from wastewater. Benefiting from abundant binding sites, simple preparation process, and adjustable structure, UiO-66-type metal-organic frameworks (MOFs) had emerged as promising candidates in heavy metal adsorption. Herein, monolithic UiO-66-(COOH)2-functionalized cellulose fiber (UCLF) adsorbents were simply fabricated by incorporating MOFs into cellulose membranes through physical blending and self-entanglement. A two-dimensional structure was facilely constructed by cellulose fibers from sustainable biomass agricultural waste, providing a support platform for the integration of eco-friendly UiO-66-(COOH)2 synthesized with lower temperature and toxicity solvent. Structure characterization and bath experiments were performed to determine operational conditions for the maximization of adsorption capacity, thereby bringing out an excellent adsorption capacity of 96.10 mg/g. UCLF adsorbent holding 10 wt % loadings of UiO-66-(COOH)2 (UCLF-2) exhibited higher adsorption capacity toward Cd2+ as compared to other related adsorbents. Based on kinetics, isotherms, and thermodynamics, the adsorption behavior was spontaneous, exothermic, as well as monolayer chemisorption. Coordination and electrostatic attraction were perhaps mechanisms involved in the adsorption process, deeply unveiled by the effects of adsorbate solution pH and X-ray photoelectron spectroscopy. Moreover, UCLF-2 adsorbent with good mechanical strength offered a structural guarantee for the successful implementation of practical applications. This study manifested the feasibility of UCLF adsorbents used for Cd2+ adsorption and unveiled a novel strategy to shape MOF materials for wastewater decontamination.

3.
J Org Chem ; 89(3): 1626-1632, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252075

RESUMO

Novel hybrid porphyrin(2.1.2.1)s and their boron and copper complexes were synthesized using the "toy bricks" synthetic method. Crystal data, frontier molecular orbital calculations, and electrostatic potential surface maps reveal that hybridization in the porphyrin(2.1.2.1) donor-acceptor unit controls the selective coordination of BF2.

4.
Inorg Chem ; 63(11): 4797-4801, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38427578

RESUMO

Two peripheral functionalized clamp-shaped cobalt porphyrin(2.1.2.1) complexes were synthesized, and their electrocatalytic ORR abilities were investigated. The crystal data and optical and redox properties of them were revised by peripheral modification. The ORR capacities and DFT calculations of F5PhCo and F5NCo suggest superior selectivity for the 4e- ORR pathway. This work further confirms the clamp-shaped cobalt porphyrin complexes are ideal Co-N4 ORR catalysts.

5.
Inorg Chem ; 63(20): 9346-9354, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38717960

RESUMO

Electrochemical water splitting is a possible way of realizing sustainable and clean hydrogen production but is challenging, because a highly active and durable electrocatalyst is essential. In this work, we integrated heterogeneous engineering and vacancy defect strategies to design and fabricate a heterostructure electrocatalyst (CoPv-MoxPv/CNT) with abundant phosphorus vacancies attached to carbon nanotubes (CNTs). The vacancy defects enabled the optimization of the electronic structure; thereby, the electron-rich low-valent metal sites enhanced the ability of nonmetallic P to capture proton H. Meanwhile, the heterogeneous interface between bimetallic phosphides and CNTs realized rapid electron transfer. In addition, the Co, Mo, and P active species in the electrocatalytic process exposed increased amounts of active sites featuring porous nanosheet structures, which facilitated the adsorption of reaction intermediates and thus enhanced the hydrogen evolution reaction performance. In particular, the optimized CoPv-MoxPv/CNT catalyst possesses an overpotential of 138 mV at a current density of 10 mA cm-2 and long-term stability for 24 h. This work offers insights and possibilities for the engineering and exploration of transition metal-based electrocatalysts through combining multiple synergistic strategies.

6.
Inorg Chem ; 63(24): 11494-11500, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38838269

RESUMO

Aromaticity is one of the most important and widely used concepts in chemistry. Among the various experimentally discovered and theoretically predicted compounds that possess different types of aromaticity, conflicting aromaticity, where aromatic and antiaromatic electron delocalization is present in one molecule simultaneously, remains one of the most controversial and elusive concepts, although theoretically predicted 15 years ago. In this work, we synthesized a novel conflicting aromatic trirhodium complex that contains a σ-aromatic metal fragment surrounded by the π-antiaromatic organic ligand and characterized it by nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry, and X-ray single crystal structure analysis. Experimental characterization and quantum chemical calculations confirm the unique conflicting aromaticity of the synthesized trirhodium molecule. Thus, this novel conflicting aromatic molecule expands the family of aromatic compounds. This discovery will enable researchers to develop and understand the phenomena of conflicting aromaticity in chemistry.

7.
Inorg Chem ; 62(4): 1679-1685, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36634365

RESUMO

Planar Ni(II) porphyrinoid complexes have been widely used in electrochemical carbon dioxide reduction reaction and oxygen reduction reaction as well as hydrogen evolution reaction (HER). However, nonplanar Ni(II) tetra-pyrrolic complexes have not been thoroughly investigated thus far. In this study, three highly bent bis(dipyrrin) Ni(II) complexes have been synthesized to investigate their structure, electronic property, and electrocatalytic HER activities. Cyclic voltammetry and thin-layer UV-visible spectroelectrochemistry studies revealed four redox processes, yielding two reduced species as the final products. The ic/ip values of phenyl- and pentafluorophenyl-bearing bis(dipyrrin) Ni(II) complexes were >30 when trifluoroacetic acid was used as the proton source, and their Faradaic efficiencies for H2 generation were >93%. Density functional theory calculations of the HERs revealed low endothermic energies of bent bis(dipyrrin) Ni(II) complexes.

8.
Inorg Chem ; 62(12): 4747-4751, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36920034

RESUMO

1ReH•Cl, a highly robust and antiaromatic rhenium(I) complex of triarylrosarin, is synthesized. The 1H NMR spectrum of 1ReH•Cl shows upfield-shifted pyrrole protons and highly downfield-shifted inner protons that confirm its antiaromatic nature, with density functional theory calculations strongly supporting this interpretation. Antiaromatic 1ReH•Cl absorbs from the UV to near-IR region of the optical spectrum; cyclic voltammetry, thin-layer UV-vis spectroelectrochemistry, and spin-density distributions clearly reveal that the rosarin backbone of 1ReH•Cl undergoes redox chemistry. The X-ray structure of 1ReH•Cl shows a fully coordinated and protonated inner cavity that effectively prevents proton-coupled electron transfer when treated with an acid. A remarkably negative NICS(0) value, clockwise anisotropy of the induced current density ring current, and the aromatic shielded inner cavity in the 2D ICSS(0) map reveal that the T1 state of 1ReH•Cl is aromatic based on Baird's rule.

9.
Angew Chem Int Ed Engl ; 62(17): e202218567, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36791258

RESUMO

The molecular structure, electrochemistry, spectroelectrochemistry and electrocatalytic oxygen reduction reaction (ORR) features of two CoII porphyrin(2.1.2.1) complexes bearing Ph or F5 Ph groups at the two meso-positions of the macrocycle are examined. Single crystal X-ray analysis reveal a highly bent, nonplanar macrocyclic conformation of the complex resulting in clamp-shaped molecular structures. Cyclic voltammetry paired with UV/Vis spectroelectrochemistry in PhCN/0.1 M TBAP suggest that the first electron addition corresponds to a macrocyclic-centered reduction while spectral changes observed during the first oxidation are consistent with a metal-centered CoII /CoIII process. The activity of the clamp-shaped complexes towards heterogeneous ORR in 0.1 M KOH show selectivity towards the 4e- ORR pathway giving H2 O. DFT first-principle calculations on the porphyrin catalyst indicates a lower overpotential for 4e- ORR as compared to the 2e- pathway, consistent with experimental data.

10.
Inorg Chem ; 61(8): 3563-3572, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35167271

RESUMO

Three copper dibenzoporphyrin(2.1.2.1) complexes having two dipyrromethene units connected through o-phenylen bridges and 4-MePh, Ph, or F5Ph substituents at the meso positions of the dipyrrins were synthesized and characterized according to their spectral, electrochemical, and structural properties. As indicated by the single-crystal X-ray structures, all three derivatives have highly bent molecular structures, with angles between each planar dipyrrin unit ranging from 89° to 85°, indicative of a nonaromatic molecule. The insertion of copper(II) into dibenzoporphyrins(2.1.2.1) induced a change in the macrocyclic cavity shape from rectangular in the case of the free-base precursors to approximately square for the metalated copper derivatives. Solution electron paramagnetic resonance (EPR) spectra at 100 K showed hyperfine coupling of the Cu(II) central metal ion and the N nucleus in the highly bent molecular structures. Electrochemical measurements in CH2Cl2 or N,N-dimethylformamide (DMF) containing 0.1 M tetrabutylammonium perchlorate (TBAP) were consistent with ring-centered electron transfers and, in the case of reduction, were assigned to electron additions involving two equivalent π centers on the bent nonaromatic molecule. The potential separation between the two reversible one-electron reductions ranged from 230 to 400 mV in DMF, indicating a moderate-to-strong interaction between the equivalent redox-active dipyrrin units of the dibenzoporphyrins(2.1.2.1). The experimentally measured highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps ranged from 2.14 to 2.04 eV and were smaller than those seen for the planar copper tetraarylporphyrins(1.1.1.1), (Ar)4PCu.

11.
Inorg Chem ; 60(21): 16070-16073, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672545

RESUMO

A highly distorted binuclear rhodium(I) complex, 2Rh, was successfully synthesized from hexaphyrin(2.1.2.1.2.1) containing dimethylvinylene-bridges between dipyrrin units. IR spectroscopy, 1H NMR spectroscopy, and X-ray crystallography revealed that the complex 2Rh consists of two rhodium(I) ions coordinated to two dipyrrin units. Rh complexation induced a transformation from a trans-/cis-/trans- to trans-/cis-/cis-conformation on the dimethylvinylene-bridges. This is the first example of rhodium(I)-ion-induced cis-/trans-isomerization in the porphyrin derivatives. Theoretical calculations of 2Rh predicted the presence of intramolecular charge-transfer absorption due to the distorted molecular structure.

12.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126711

RESUMO

Vinylene-bridged cyclic boron-difluoride complex of dipyrrin (BODIPY) trimers were successfully prepared from expanded dimethyl-vinylene bridged hexaphyrin(2.1.2.1.2.1) Me-Hex that has the structure of alternate dipyrrins and vinylene bridges. The hexaphyrin(2.1.2.1.2.1) Me-Hex can coordinate with boron ions to afford five kinds of cyclic BODIPYs given by step-by-step boron complexations. Crystal structures of all cyclic BODIPYs except for 3BF2-Me-Hex(b) formed non-planar structures. The theoretical calculation predicted that mono-/bis-boron cyclic BODIPYs show the intramolecular charge transfer (ICT) characteristics, whereas tri-boron cyclic BODIPYs have no ICT characteristics. Reflecting these electronic properties, tri-boron cyclic BODIPYs exhibit weak fluorescence in the red region, but mono-/bis-boron cyclic BODIPYs exhibit no emission. Vinylene bridged cyclic dipyrrin trimer Me-Hex is the novel porphyrinoid ligand allowed to control the boron coordination under different reaction conditions to form various boron complexes.


Assuntos
Compostos de Boro/química , Dioxóis/química , Fluorescência , Corantes Fluorescentes/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
13.
Angew Chem Int Ed Engl ; 58(36): 12524-12528, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31287217

RESUMO

Vinylene-bridged hexaphyrin(2.1.2.1.2.1) was synthesized from dipyrrolyl diphenylethenes by acid-catalyzed condensation reactions. Freebase hexaphyrin(2.1.2.1.2.1) forms a distorted structure with non-aromatic characteristics. The aromaticity and molecular configuration of non-planar hexaphyrin(2.1.2.1.2.1) can be controlled by insertion of metal ions. Freebase and zinc complexes show a distorted structure without macrocyclic aromaticity, whereas copper complexes show a figure-of-eight structure with macrocyclic aromaticity. It is the first example of aromaticity conversion of a distorted expanded porphyrin involving vinylene bridges.

14.
Inorg Chem ; 57(16): 9902-9906, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30070471

RESUMO

Expanded porphyrins are attractive research targets because of their large and flexible structures, optical and electrochemical properties, and diverse coordination abilities. We are interested in the use of double bonds within expanded porphyrins because double bonds could conduct isomerization, expansion of π-conjugation, and giving different molecular geometry. We, thus, report [30]hexaphyrin(2.1.2.1.2.1) 3H-1, which was synthesized by a simple condensation reaction of 1,2-di(pyrrol-2-yl)ethene and pentafluorobenzaldehyde under an acidic condition. The compound 3H-1 exhibited 30π aromatic property with a highly planar structure, displaying intense Soret- and weak Q-like absorption bands. The compound 3H-1 has a sufficient space and dipyrrin-like coordination sites in its cavity. Trinuclear rhodium(I) complex 3Rh-1 was obtained with [Rh(CO)2Cl]2 and exhibited six redox potentials.

15.
Inorg Chem ; 56(21): 13613-13626, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29064238

RESUMO

Three series of cobalt tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry. The investigated compounds have the general formula (TpYPP)Co, butano(TpYPP)CoII, and benzo(TpYPP)CoII, where TpYPP represents the dianion of the meso-substituted porphyrin, Y is a CH3, H, or Cl substituent on the para position of the four phenyl rings, and butano and benzo are respectively the ß- and ß'-substituted groups on the four pyrrole rings of the compound. Each porphyrin undergoes one or two reductions depending upon the meso substituent and solvent utilized. Two irreversible reductions are observed for (TpYPP)CoII and butano(TpYPP)CoII in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate; the first leads to the formation of a highly reactive cobalt(I) porphyrin, which can then rapidly react with a solvent to give a CoIIICH2Cl as the product. Only one reversible reduction is seen for benzo(TpYPP)CoII under the same solution conditions, and the one-electron-reduction product is assigned as a cobalt(II) porphyrin π-anion radical. Three oxidations can be observed for each examined compound in CH2Cl2. The first oxidation is metal-centered for the (TpYPP)Co and benzo(TpYPP)CoII derivatives, leading to generation of a cobalt(III) porphyrin with an intact π-ring system, but this redox process is ring-centered in the case of butano(TpYPP)CoII and gives a CoII π-cation radical product. Each porphyrin was also examined as a catalyst for oxygen reduction reactions (ORRs) when adsorbed on a graphite electrode in 1.0 M HClO4. The number of electrons transferred (n) during ORRs is 2.0 for the butano(TpYPP)CoII derivatives, consistent with only H2O2 being produced as a product for the reaction with O2. However, the reduction of O2 using the cobalt benzoporphyrins as catalysts gave n values between 2.6 and 3.1 under the same solution conditions, thus producing a mixture of H2O and H2O2 as the reduction product. This result indicates that the ß and ß' substituents have a significant effect on the catalytic properties of the cobalt porphyrins for ORRs in acid media.

16.
Inorg Chem ; 55(20): 10106-10109, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27661397

RESUMO

A sandwich complex of iridium(III) benzotriphyrin (2) has been synthesized from free-base benzotriphyrin (1) and [IrCl(cod)]2 (COD = 1,5-cyclooctadiene). The COD ring was transformed from 1,5-COD to an η1,η3-C8H12 unit as a π-allyl ligand associated with the valence change of iridium from IrI to IrIII, as revealed by X-ray diffraction analysis. The Soret-like band of 2 was blue-shifted and broadened compared with that of 1, indicating strong electronic interactions between triphyrin and the iridium ion. Compound 2 also showed very broad absorption in the range of 500-800 nm, which can be assigned to a mixture of Q and metal-to-ligand charge-transfer bands.

17.
Chemistry ; 21(41): 14579-88, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26397188

RESUMO

Four nitrated N-confused free-base tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media. The examined compounds are represented as NO2 (Ar)4 NcpH2 , where NO2 (Ar)4 Ncp is the dianion of a tetraaryl N-confused porphyrin with an inner carbon bound NO2 group and Ar is a p-CH3 OPh, p-CH3 Ph, Ph or p-ClPh substituent on each meso-position of the macrocycle. UV/Vis spectra and NMR spectroscopy data indicate that the same form of the porphyrin exists in CH2 Cl2 and DMF which is unlike the case of non-NO2 N-confused porphyrins. The Soret band of NO2 (Ar)4 NcpH2 exhibits a 30-36 nm red-shift in CH2 Cl2 and DMF as compared to the spectrum of the non-NO2 N-confused porphyrins. The first two reductions and first oxidation of NO2 (Ar)4 NcpH2 are reversible in CH2 Cl2 containing 0.1 M TBAP. The measured HOMO-LUMO gap averages 1.65 V in CH2 Cl2 and 1.53 V in DMF, with both values being similar to those of the non-NO2 substituted compounds. The nitro group on the inverted pyrrole is itself not reduced within the negative potential limit of CH2 Cl2 or DMF, but its presence significantly affects both the UV/Vis spectra and redox potentials.

18.
Chemistry ; 21(6): 2651-61, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25521964

RESUMO

A series of N-confused free-base meso-substituted tetraarylporphyrins was investigated by electrochemistry and spectroelectrochemistry in nonaqueous media containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) and added acid or base. The investigated compounds are represented as (XPh)4 NcpH2 , in which "Ncp" is the N-confused porphyrin macrocycle and X is a OCH3 , CH3 , H, or Cl substituent on the para position of each meso-phenyl ring of the macrocycle. Two distinct types of UV/Vis spectra are initially observed depending upon solvent, one corresponding to an inner-2H form and the other to an inner-3H form of the porphyrin. Both forms have an inverted pyrrole with a carbon inside the cavity and a nitrogen on the periphery of the π-system. Each porphyrin undergoes multiple irreversible reductions and oxidations. The first one-electron addition and first one-electron abstraction are located on the porphyrin π-ring system to give π-anion and π-cation radicals with a potential separation of 1.52 to 1.65 V between the two processes, but both electrogenerated products are unstable and undergo a rapid chemical reaction to give new electroactive species, which were characterized in the present study. The effect of the solvent and protonation/deprotonation reactions on the UV/Vis spectra, redox potentials and reduction/oxidation mechanisms is discussed with comparisons made to data and mechanisms for the structurally related free-base corroles and porphyrins.

19.
Chem Commun (Camb) ; 60(29): 3986-3989, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502120

RESUMO

The development of efficient molecular catalysts for the electrocatalytic hydrogen evolution reaction (HER) is very necessary and important for fuel cells. In this work, we report a new benzene-fused porphyrin(2.1.2.1) array, BPD, with a unique S-shaped molecular conformation. The electrochemistry of BPD displays multielectron donating and accepting properties owing to the two porphyrin(2.1.2.1) blocks and degenerate molecular orbitals. The electrocatalytic HER activity of BPD is remarkably higher-that is, BPD exhibited lower overpotential, faster HER kinetics, faster charge transfer kinetics, and extended catalytic stability-than that of the porphyrin(2.1.2.1) copper complex monomer.

20.
Dalton Trans ; 53(13): 5979-5984, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465377

RESUMO

Four new non-planar and non-aromatic porphyrin organopalladium complexes were synthesized. Conformational structures and optical and electronic properties of the obtained organopalladium complexes containing meso-substituted phenyl, p-tert-butylphenyl, or pentafluorophenyl groups were fully investigated. These complexes showed potent capacity for singlet oxygen (1O2) generation under blue-light irradiation, and the 1O2 quantum yields were in the range of 41%-56%, which were comparable to that of Ru(bpy)3Cl2 (57%), and such potency made these organopalladium complexes potential 1O2 photo sensitizers for photodynamic therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA