Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
World J Gastroenterol ; 28(37): 5420-5443, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36312839

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. The identification of novel diagnostic and prognostic biomarkers for CRC is a key research imperative. Immunohistochemical analysis has revealed high expression of centromere protein K (CENPK) in CRC. However, the role of CENPK in the progression of CRC is not well characterized. AIM: To evaluate the effects of knockdown of CENPK and overexpression of Cullin 4A (CUL4A) in RKO and HCT116 cells. METHODS: Human colon cancer samples were collected and tested using a human gene expression chip. We identified CENPK as a potential oncogene for CRC based on bioinformatics analysis. In vitro experiments verified the function of this gene. We investigated the expression of CENPK in RKO and HCT116 cells using quantitative polymerase chain reaction (qPCR), western blot, and flow cytometry. The effect of short hairpin RNA (shRNA) virus-infected RKO cells on tumor growth was evaluated in vivo using quantitative analysis of fluorescence imaging. To evaluate the effects of knockdown of CENPK and overexpression of CUL4A in RKO and HCT116 cells, we performed a series of in vitro experiments, using qPCR, western blot, MTT assay, and flow cytometry. RESULTS: We demonstrated overexpression of CENPK in human colon cancer samples. CENPK was an independent risk factor in patients with CRC. The downstream genes FBX32, CUL4A, and Yes-associated protein isoform 1 were examined to evaluate the regulatory action of CENPK in RKO cells. Significantly delayed xenograft tumor emergence, slower growth rate, and lower final tumor weight and volume were observed in the CENPK short hairpin RNA virus infected group compared with the CENPK negative control group. The CENPK gene interference inhibited the proliferation of RKO cells in vitro and in vivo. The lentivirus-mediated shRNA interference of CENPK inhibited the proliferation of RKO and HCT116 colon cancer cells, with overexpression of the CUL4A. CONCLUSION: We indicated a potential role of CENPK in promoting tumor proliferation, and it may be a novel diagnostic and prognostic biomarker for CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Lentivirus/genética , RNA Interferente Pequeno/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Interferência de RNA , Movimento Celular , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/metabolismo
2.
J Int Med Res ; 48(6): 300060520931242, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32588696

RESUMO

OBJECTIVE: The role and mechanism of tetrathiomolybdate (TM) in cancer-associated fibroblasts (CAFs) in colon cancer using three-dimensional (3D) culture were investigated, and the associations between the focal adhesion kinase (FAK) pathway and epithelial-mesenchymal transition (EMT) in CAFs were explored. METHODS: A 3D co-culture model of colon cancer LOVO cells with CAFs and normal fibroblasts (NFs) was established using Matrigel as a scaffold material. The differential expression of LOXL2 (lysyl oxidase-like 2) in the supernatant of CAFs and NFs was determined using ELISA, and expression levels of EMT-related proteins and FAK signaling pathway-related proteins were determined using western blot. RESULTS: LOXL2 levels secreted by CAFs were higher compared with that secreted by NFs. In the CAF + LOVO group, compared with the LOVO group, E-cadherin expression decreased significantly, while N-cadherin and F-PAK expression increased significantly. TM results were opposite compared with the above results. CONCLUSIONS: CAFs stimulate EMT in human colon cancer LOVO cells by secreting LOXL2 to activate the FAK signaling pathway, thereby promoting tumor metastasis. TM inhibited the occurrence of EMT in the CAF-induced colon cancer LOVO cell line, thereby reducing the invasion and metastasis of colon cancer cells.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Fibroblastos , Proteína-Tirosina Quinases de Adesão Focal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA