Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Parkinsonism Relat Disord ; 8(6): 385-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12217624

RESUMO

Oxidative stress is believed to contribute to the pathogenesis of Parkinson's disease. One of the indices of oxidative stress is the depletion of the antioxidant glutathione (GSH), which may occur early in the development of Parkinson's disease. To study the role of GSH depletion in the survival of dopamine neurons we treated mesencephalic cultures with the GSH synthesis inhibitor L-buthionine sulfoximine. Our studies have shown that the depletion of GSH causes a cascade of events, which ultimately may result in cell death. An early event following GSH depletion is a phospholipase A(2)-dependent release of arachidonic acid. Arachidonic acid can cause damage to the GSH-depleted cells through its metabolism by lipoxygenase. The generation of superoxide radicals during the metabolism of arachidonic acid is likely to play an important role in the toxic events that follow GSH depletion.


Assuntos
Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Animais , Humanos
2.
Eur J Neurosci ; 19(2): 280-6, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14725622

RESUMO

The contribution of arachidonic acid (AA) release and metabolism to the toxicity that results from glutathione (GSH) depletion was studied in rat mesencephalic cultures treated with the GSH synthesis inhibitor l-buthionine sulfoximine. Our data show that GSH depletion is accompanied by increased release of AA, which is phosholipase A2 (PLA2) dependent. Exogenous AA is toxic to GSH-depleted cells. This toxicity is prevented by inhibition of lipoxygenase activity, suggesting participation of toxic byproducts of AA metabolism. Hydroxyperoxyeicosatetraenoic acid (HPETE), one of the primary products of AA metabolism by lipoxygenase is also toxic to GSH-depleted cells, whereas hydroeicosatetraenoic acid (HETE) is not. Cell death caused by GSH depletion is prevented by: (i) replenishment of GSH levels with GSH-ethyl ester; (ii) inhibition of PLA2 activity; (iii) inhibition of lipoxygenase activity; and (iv), treatment with ascorbic acid. These data suggest that the following events likely contribute to cell death when GSH levels become depleted. Loss of GSH results in increased release of AA, which is PLA2 dependent. Metabolism of arachidonic acid via the lipoxygenase pathway results in generation of oxygen free radicals possibly produced during conversion of HPETE to HETE, which contribute to cellular damage and death. Our study suggests that limiting AA release and metabolism may provide benefit in conditions with an existing depletion of GSH, such as Parkinson's disease.


Assuntos
Ácido Araquidônico/fisiologia , Glutationa/metabolismo , Glutationa/toxicidade , Lipoxigenase/metabolismo , Mesencéfalo/metabolismo , Animais , Ácido Araquidônico/metabolismo , Butionina Sulfoximina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA