Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 9(12): e115409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25521849

RESUMO

M. tuberculosis harbors an essential phosphoserine phosphatase (MtSerB2, Rv3042c) that contains two small- molecule binding ACT-domains (Pfam 01842) at the N-terminus followed by the phosphoserine phosphatase (PSP) domain. We found that exogenously added MtSerB2 elicits microtubule rearrangements in THP-1 cells. Mutational analysis demonstrates that phosphatase activity is co-related to the elicited rearrangements, while addition of the ACT-domains alone elicits no rearrangements. The enzyme is dimeric, exhibits divalent metal- ion dependency, and is more specific for l- phosphoserine unlike other classical PSPases. Binding of a variety of amino acids to the ACT-domains influences MtSerB2 activity by either acting as activators/inhibitors/have no effects. Additionally, reduced activity of the PSP domain can be enhanced by equimolar addition of the ACT domains. Further, we identified that G18 and G108 of the respective ACT-domains are necessary for ligand-binding and their mutations to G18A and G108A abolish the binding of ligands like l- serine. A specific transition to higher order oligomers is observed upon the addition of l- serine at ∼0.8 molar ratio as supported by Isothermal calorimetry and Size exclusion chromatography experiments. Mutational analysis shows that the transition is dependent on binding of l- serine to the ACT-domains. Furthermore, the higher-order oligomeric form of MtSerB2 is inactive, suggesting that its formation is a mechanism for feedback control of enzyme activity. Inhibition studies involving over eight inhibitors, MtSerB2, and the PSP domain respectively, suggests that targeting the ACT-domains can be an effective strategy for the development of inhibitors.


Assuntos
Mycobacterium tuberculosis/enzimologia , Monoéster Fosfórico Hidrolases/química , Sequência de Aminoácidos , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica
2.
PLoS One ; 6(11): e26629, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073177

RESUMO

HIV-1 Nef modulates disease progression through interactions with over 30 host proteins. Individual chains fold into membrane-interacting N-terminal and C-terminal core (Nef(core)) domains respectively. Nef exists as small oligomers near membranes and associates into higher oligomers such as tetramers or hexadecamers in the cytoplasm. Earlier structures of the Nef(core) in apo and complexed forms with the Fyn-kinase SH3 domain revealed dimeric association details and the role of the conserved PXXP recognition motif (residues 72-78) of Nef in SH3-domain interactions. The crystal structure of the tetrameric Nef reported here corresponds to the elusive cytoplasmic stage. Comparative analyses show that subunits of Nef(core) dimers (open conformation) swing out with a relative displacement of ~22 Å and rotation of ~174° to form the 'closed' tetrameric structure. The changes to the association are around Asp125, a conserved residue important for viral replication and the important XR motif (residues 107-108). The tetramer associates through C4 symmetry instead of the 222 symmetry expected when two dimers associate together. This novel dimer-tetramer transition agrees with earlier solution studies including small angle X-ray scattering, analytical ultracentrifugation, dynamic laser light scattering and our glutaraldehyde cross-linking experiments. Comparisons with the Nef(core)--Fyn-SH3 domain complexes reveal that the PXXP motif that interacts with the SH3-domain in the dimeric form is sterically occluded in the tetramer. However the 151-180 loop that is distal to the PXXP motif and contains several protein interaction motifs remains accessible. The results suggest how changes to the oligomeric state of Nef can help it distinguish between protein partners.


Assuntos
Biopolímeros/química , Produtos do Gene nef/química , HIV-1/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA