Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(10): e0021924, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39225483

RESUMO

This study aimed to assess the nephrotoxicity associated with VRP-034 (novel formulation of polymyxin B [PMB]) compared to marketed PMB in a three-dimensional (3D) kidney-on-a-chip model. To model the human kidney proximal tubule for analysis, tubular structures were established using 23 triple-channel chips seeded with RPTEC/hTERT1 cells. These cells were exposed to VRP-034 or PMB at seven concentrations (1-200 µM) over 12, 24, and 48 h. A suite of novel kidney injury biomarkers, cell health, and inflammatory markers were quantitatively assessed in the effluent. Additionally, caspase and cytochrome C levels were measured, and cell viability was evaluated using calcein AM and ethidium homodimer-1 (EthD-1). Exposure to marketed PMB resulted in significantly elevated levels (P < 0.05) of four key biomarkers (KIM-1, cystatin C, clusterin, and OPN) compared to VRP-034, particularly at clinically relevant concentrations of ≥10 µM. At 25 µM, all biomarkers demonstrated a significant increase (P < 0.05) with marketed PMB exposure compared to VRP-034. Inflammatory markers (interleukin-6 and interleukin-8) increased significantly (P < 0.05) with marketed PMB at concentrations of ≥5 µM, relative to VRP-034. VRP-034 displayed superior cell health outcomes, exhibiting lower lactate dehydrogenase release, while ATP levels remained comparable. Morphological analysis revealed that marketed PMB induced more severe damage, disrupting tubular integrity. Both treatments activated cytochrome C, caspase-3, caspase-8, caspase-9, and caspase-12 in a concentration-dependent manner; however, caspase activation was significantly reduced (P < 0.05) with VRP-034. This study demonstrates that VRP-034 significantly reduces nephrotoxicity compared to marketed PMB within a 3D microphysiological system, suggesting its potential to enable the use of full therapeutic doses of PMB with an improved safety profile, addressing the need for less nephrotoxic polymyxin antibiotics.


Assuntos
Cistatina C , Túbulos Renais Proximais , Polimixina B , Polimixina B/farmacologia , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Citocromos c/metabolismo , Antibacterianos/farmacologia , Dispositivos Lab-On-A-Chip , Sobrevivência Celular/efeitos dos fármacos , Biomarcadores/metabolismo , Interleucina-6/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Caspase 9/metabolismo , Interleucina-8/metabolismo , Caspase 8/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Rim/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Chem Biodivers ; : e202401465, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036940

RESUMO

Aromatase inhibitors play a critical therapeutic role in treating ER+ breast cancer, especially in postmenopausal women. However, their efficacy is often limited by resistance and severe side effects. Identifying new compounds that can disrupt aromatase enzyme function is essential. In this study, structural anomalies in the aromatase enzyme were corrected through energy minimization, and the structure was validated via Ramachandran plot. We screened 170,269 natural compounds from the ASINEX Biodesign library using high-throughput screening algorithms to target the aromatase enzyme. Molecular docking identified three compounds: BDD30170158, BDE33872639, and BDE30177677, all showing stable binding interactions with the aromatase enzyme. Molecular dynamics simulations over 100 ns confirmed the conformational stability of these compounds. Although all three compounds exhibited the desired pharmacokinetic and drug metabolism properties, only one compound (BDE33872639) was identified as a non-blocker, demonstrating a reduced risk of adverse cardiac effects. This compound exhibits significant potential as a novel aromatase inhibitor, warranting further experimental research to develop it as a therapeutic option for ER+ breast cancer.

3.
Chem Biodivers ; 20(2): e202200600, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36597267

RESUMO

Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2) and is responsible for a higher degree of morbidity and mortality worldwide. There is a smaller number of approved therapeutics available to target the SARS-CoV-2 virus, and the virus is evolving at a fast pace. So, there is a continuous need for new therapeutics to combat COVID-19. The main protease (Mpro ) enzyme of SARS-CoV-2 is essential for replication and transcription of the viral genome, thus could be a potent target for the treatment of COVID-19. In the present study, we performed an in-silico screening analysis of 400 diverse bioactive inhibitors with proven antibacterial and antiviral properties against Mpro drug target. Ten compounds showed a higher binding affinity for Mpro than the reference compound (N3), with desired physicochemical properties. Furthermore, in-depth docking and superimposition revealed that three compounds (MMV1782211, MMV1782220, and MMV1578574) are actively interacting with the catalytic domain of Mpro . In addition, the molecular dynamics simulation study showed a solid and stable interaction of MMV178221-Mpro complex compared to the other two molecules (MMV1782220, and MMV1578574). In line with this observation, MM/PBSA free energy calculation also demonstrated the highest binding free energy of -115.8 kJ/mol for MMV178221-Mpro compound. In conclusion, the present in silico analysis revealed MMV1782211 as a possible and potent molecule to target the Mpro and must be explored in vitro and in vivo to combat the COVID-19.


Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2
4.
Mol Biol Rep ; 49(4): 2579-2589, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34914086

RESUMO

BACKGROUND: The plant growth is influenced by multiple interactions with biotic (microbial) and abiotic components in their surroundings. These microbial interactions have both positive and negative effects on plant. Plant growth promoting bacterial (PGPR) interaction could result in positive growth under normal as well as in stress conditions. METHODS: Here, we have screened two PGPR's and determined their potential in induction of specific gene in host plant to overcome the adverse effect of biotic stress caused by Magnaporthe grisea, a fungal pathogen that cause blast in rice. We demonstrated the glucanase protein mode of action by performing comparative modeling and molecular docking of guanosine triphosphate (GTP) ligand with the protein. Besides, molecular dynamic simulations have been performed to understand the behavior of the glucanase-GTP complex. RESULTS: The results clearly showed that selected PGPR was better able to induce modification in host plant at morphological, biochemical, physiological and molecular level by activating the expression of ß-1,3-glucanases gene in infected host plant. The docking results indicated that Tyr75, Arg256, Gly258, and Ser223 of glucanase formed four crucial hydrogen bonds with the GTP, while, only Val220 found to form hydrophobic contact with ligand. CONCLUSIONS: The PGPR able to induce ß-1,3-glucanases gene in host plant upon pathogenic interaction and ß-1,3-glucanases form complex with GTP by hydrophilic interaction for induction of defense cascade for acquiring resistance against Magnaporthe grisea.


Assuntos
Magnaporthe , Oryza , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bactérias , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Ligantes , Magnaporthe/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oryza/genética , Doenças das Plantas/microbiologia
5.
Appl Microbiol Biotechnol ; 106(2): 505-521, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35015145

RESUMO

Probiotics have been considered as an economical and safe alternative for the treatment of a large number of chronic diseases and improvement of human health. They are known to modulate the host immunity and protect from several infectious and non-infectious diseases. The colonization, killing of pathogens and induction of host cells are few of the important probiotic attributes which affect several functions of the host. In addition, prebiotics and non-digestible food substances selectively promote the growth of probiotics and human health through nutrient enrichment, and modulation of gut microbiota and immune system. This review highlights the role of probiotics and prebiotics alone and in combination (synbiotics) in the modulation of immune system, treatment of infections, management of inflammatory bowel disease and cancer therapy. KEY POINTS: • Probiotics and their derivatives against several human diseases. • Prebiotics feed probiotics and induce several functions in the host. • Discovery of novel and biosafe products needs attention for human health.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Simbióticos , Humanos , Prebióticos
6.
Genomics ; 113(1 Pt 2): 944-956, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127583

RESUMO

Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete.


Assuntos
Carpas/genética , Resistência à Doença/genética , Doenças dos Peixes/genética , Infecções/genética , Transcriptoma , Animais , Aphanomyces/patogenicidade , Carpas/imunologia , Carpas/microbiologia , Quimiocinas/genética , Quimiocinas/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Infecções/imunologia , Fagocitose
7.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897732

RESUMO

Interleukin-27 is constitutively secreted by microglia in the retina or brain, and upregulation of IL-27 during neuroinflammation suppresses encephalomyelitis and autoimmune uveitis. However, while IL-35 is structurally and functionally similar to IL-27, the intrinsic roles of IL-35 in CNS tissues are unknown. Thus, we generated IL-35/YFP-knock-in reporter mice (p35-KI) and demonstrated that photoreceptor neurons constitutively secrete IL-35, which might protect the retina from persistent low-grade inflammation that can impair photoreceptor functions. Furthermore, the p35-KI mouse, which is hemizygous at the il12a locus, develops more severe uveitis because of reduced IL-35 expression. Interestingly, onset and exacerbation of uveitis in p35-KI mice caused by extravasation of proinflammatory Th1/Th17 lymphocytes into the retina were preceded by a dramatic decrease of IL-35, attributable to massive death of photoreceptor cells. Thus, while inflammation-induced death of photoreceptors and loss of protective effects of IL-35 exacerbated uveitis, our data also suggest that constitutive production of IL-35 in the retina might have housekeeping functions that promote sterilization immunity in the neuroretina and maintain ocular immune privilege.


Assuntos
Doenças Autoimunes , Interleucinas , Uveíte , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Privilégio Imunológico , Inflamação/metabolismo , Interleucina-27/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Células Th17 , Uveíte/metabolismo
8.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077342

RESUMO

MAFB is a basic leucine zipper (bZIP) transcription factor specifically expressed in macrophages. We have previously identified MAFB as a candidate marker for tumor-associated macrophages (TAMs) in human and mouse models. Here, we analyzed single-cell sequencing data of patients with lung adenocarcinoma obtained from the GEO database (GSE131907). Analyzed data showed that general macrophage marker CD68 and macrophage scavenger receptor 1 (CD204) were expressed in TAM and lung tissue macrophage clusters, while transcription factor MAFB was expressed specifically in TAM clusters. Clinical records of 120 patients with lung adenocarcinoma stage I (n = 57), II (n = 21), and III (n = 42) were retrieved from Tsukuba Human Tissue Biobank Center (THB) in the University of Tsukuba Hospital, Japan. Tumor tissues from these patients were extracted and stained with anti-human MAFB antibody, and then MAFB-positive cells relative to the tissue area (MAFB+ cells/tissue area) were morphometrically quantified. Our results indicated that higher numbers of MAFB+ cells significantly correlated to increased local lymph node metastasis (nodal involvement), high recurrence rate, poor pathological stage, increased lymphatic permeation, higher vascular invasion, and pleural infiltration. Moreover, increased amounts of MAFB+ cells were related to poor overall survival and disease-free survival, especially in smokers. These data indicate that MAFB may be a suitable prognostic biomarker for smoker lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Biomarcadores , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Macrófagos , Fator de Transcrição MafB/genética , Camundongos , Prognóstico
9.
J Environ Manage ; 302(Pt A): 113965, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34731705

RESUMO

The kinetic, isotherm, and thermodynamics of adsorptive removal of fluoride from the real-life groundwater was evaluated to assess the applicability of a green adsorbent, aluminum/olivine composite (AOC). The isotherm and kinetics were demonstrated by the Freundlich and Elovich model indicating significant surface heterogeneity of AOC in favouring the fluoride sorption. The fluoride removal efficiency of AOC was achieved as 87.5% after 240 min of contact time. The diffusion kinetic model exhibited that both the intra-particle and film diffusion together control the rate-limiting step of fluoride adsorption. A negative value of ΔG0 (-19.919 kJ/mol) at 303 K confirmed the spontaneous adsorption reaction of fluoride, and its endothermic nature was supported by the negative value of ΔH0 (39.504 kJ/mol). A novel framework for a predictive model by artificial neural network (ANN), and support vector machine (SVM) considering the real and synthetic fluoride-containing water was developed to assess the efficiency of adsorbent under different scenarios. ANN model was observed to be statistically significant (RMSE: 1.0955 and R2: 0.9982) and the proposed method may be instrumental in a similar area for benchmarking the synthetic and real-life samples. The low desorption potential of the spent adsorbent exhibited safe disposal of sludge and the secondary-pollutant-free treated water by the efficient and green adsorbent AOC enhanced the field-scale applicability of the green technology.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Adsorção , Alumínio , Fluoretos/análise , Concentração de Íons de Hidrogênio , Compostos de Ferro , Cinética , Compostos de Magnésio , Redes Neurais de Computação , Silicatos , Máquina de Vetores de Suporte , Termodinâmica , Poluentes Químicos da Água/análise
10.
Molecules ; 27(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35566383

RESUMO

Ralstonia solanacearum is among the most damaging bacterial phytopathogens with a wide number of hosts and a broad geographic distribution worldwide. The pathway of phenotype conversion (Phc) is operated by quorum-sensing signals and modulated through the (R)-methyl 3-hydroxypalmitate (3-OH PAME) in R. solanacearum. However, the molecular structures of the Phc pathway components are not yet established, and the structural consequences of 3-OH PAME on quorum sensing are not well studied. In this study, 3D structures of quorum-sensing proteins of the Phc pathway (PhcA and PhcR) were computationally modeled, followed by the virtual screening of the natural compounds library against the predicted active site residues of PhcA and PhcR proteins that could be employed in limiting signaling through 3-OH PAME. Two of the best scoring common ligands ZINC000014762512 and ZINC000011865192 for PhcA and PhcR were further analyzed utilizing orbital energies such as HOMO and LUMO, followed by molecular dynamics simulations of the complexes for 100 ns to determine the ligands binding stability. The findings indicate that ZINC000014762512 and ZINC000011865192 may be capable of inhibiting both PhcA and PhcR. We believe that, after further validation, these compounds may have the potential to disrupt bacterial quorum sensing and thus control this devastating phytopathogenic bacterial pathogen.


Assuntos
Ralstonia solanacearum , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligantes , Percepção de Quorum/genética
11.
J Biol Chem ; 295(48): 16359-16369, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32943552

RESUMO

The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemic insulin resistance is less clear. We now provide evidence that hyperinsulinemia promotes the release of soluble pro-inflammatory mediators from macrophages that lead to systemic insulin resistance. Our observations suggest that hyperinsulinemia induces sirtuin1 (SIRT1) repression and stimulates NF-κB p65 nuclear translocation and transactivation of NF-κB to promote the extracellular release of pro-inflammatory mediators. We further showed that low-dose naltrexone (LDN) abrogates hyperinsulinemia-mediated SIRT1 repression and prevents NF-κB p65 nuclear translocation. This, in turn, attenuates the hyperinsulinemia-induced release of pro-inflammatory cytokines and reinstates insulin sensitivity both in in vitro and in vivo diet-induced hyperinsulinemic mouse model. Notably, our data indicate that Sirt1 knockdown or inhibition blunts the anti-inflammatory properties of LDN in vitro Using numerous complementary in silico and in vitro experimental approaches, we demonstrated that LDN can bind to SIRT1 and increase its deacetylase activity. Together, these data support a critical role of SIRT1 in inflammation and insulin resistance in hyperinsulinemia. LDN improves hyperinsulinemia-induced insulin resistance by reorienting macrophages toward anti-inflammation. Thus, LDN treatment may provide a novel therapeutic approach against hyperinsulinemia-associated insulin resistance.


Assuntos
Hiperinsulinismo/tratamento farmacológico , Resistência à Insulina , Naltrexona/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Células RAW 264.7 , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
12.
Microb Pathog ; 161(Pt A): 105214, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592368

RESUMO

Plasmodium knowlesi, recognized as the fifth Plasmodium parasite, is the least studied malaria parasite. It is a significant cause of morbidity and mortality in the South-East Asia region. Enzymes of folate synthesis, especially dihydrofolate reductase (DHFR), is a well-approved drug target in other Plasmodium species, but its role in Plasmodium knowlesi is poorly studied. This work characterizes PkDHFR as a drug target and identifies inhibitors that can withstand the upcoming problem of resistance. The 3D structure of the PkDHFR target is modelled using comparative modelling, and further, it is refined and validated using energy minimization and torsional angle analysis methods. We extracted 13 compounds from DrugBank and ZINC databases using the "target similarity search" criteria. These compounds were categorized based on their binding affinity (-4.49 to -10.08 kcal/mol) and pose prediction against the active site of PkDHFR. Later on, the top 5 PkDHFR-compound complexes with high or equivalent binding affinity to its natural ligand (dihydrofolate) have undergone for dynamics. The simulation experiments reveal the higher stability of DB00563-PkDHFR complex and less conformational fluctuations and share a similar degree of compactness throughout the simulation trajectory. The MM/GBSA calculation of free energy of DB00563 is also the least (-72.84 kcal/mol) compared to others. Furthermore, the flexible side chain of DB00563 can bind and block the active site of PkDHFR more efficiently. Thus, the identified drug may be considered as a potential candidate for treating P. knowlesi malaria.


Assuntos
Malária , Plasmodium knowlesi , Humanos , Malária/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tetra-Hidrofolato Desidrogenase
13.
Anal Biochem ; 631: 114368, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34499898

RESUMO

The interaction of antimicrobial peptides with membrane lipids plays a major role in numerous physiological processes. In this study, polydiacetylene (PDA) vesicles were synthesized using 10, 12-tricosadiynoic acid (TRCDA) and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). These vesicles were applied as artificial membrane biosensor for the detection of plantaricin LD1 purified from Lactobacillus plantarum LD1. Plantaricin LD1 (200 µg/mL) was able to interact with PDA vesicles by changing the color from blue to red with colorimetric response 30.26 ± 0.59. Nisin (200 µg/mL), used as control, also changed the color of the vesicles with CR% 50.56 ± 0.98 validating the assay. The vesicles treated with nisin and plantaricin LD1 showed increased infrared absorbance at 1411.46 and 1000-1150 cm-1 indicated the interaction of bacteriocins with phospholipids and fatty acids, respectively suggesting membrane-acting nature of these bacteriocins. Further, microscopic observation of bacteriocin-treated vesicles showed several damages indicating the interaction of bacteriocins. These findings suggest that the PDA vesicles may be used as bio-mimetic sensor for the detection of bacteriocins produced by several probiotics in food and therapeutic applications.


Assuntos
Peptídeos Antimicrobianos/análise , Bacteriocinas/análise , Colorimetria/métodos , Polímero Poliacetilênico/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/isolamento & purificação , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Dimiristoilfosfatidilcolina/química , Ácidos Graxos Insaturados/química , Lactobacillus plantarum/química , Membranas Artificiais , Nisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrafiltração
14.
Fish Shellfish Immunol ; 111: 208-219, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33577877

RESUMO

Nile tilapia (Oreochromis niloticus) is one of the most important aquaculture species farmed worldwide. However, the recent emergence of tilapia lake virus (TiLV) disease, also known as syncytial hepatitis of tilapia, has threatened the global tilapia industry. To gain more insight regarding the host response against the disease, the transcriptional profiles of liver in experimentally-infected and control tilapia were compared. Analysis of RNA-Seq data identified 4640 differentially expressed genes (DEGs), which were involved among others in antigen processing and presentation, MAPK, apoptosis, necroptosis, chemokine signaling, interferon, NF-kB, acute phase response and JAK-STAT pathways. Enhanced expression of most of the DEGs in the above pathways suggests an attempt by tilapia to resist TiLV infection. However, upregulation of some of the key genes such as BCL2L1 in apoptosis pathway; NFKBIA in NF-kB pathway; TRFC in acute phase response; and SOCS, EPOR, PI3K and AKT in JAK-STAT pathway and downregulation of the genes, namely MAP3K7 in MAPK pathway; IFIT1 in interferon; and TRIM25 in NF-kB pathway suggested that TiLV was able to subvert the host immune response to successfully establish the infection. The study offers novel insights into the cellular functions that are affected following TiLV infection and will serve as a valuable genomic resource towards our understanding of susceptibility of tilapia to TiLV infection.


Assuntos
Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Fígado/imunologia , Transcriptoma/imunologia , Animais , Doenças dos Peixes/virologia , Perfilação da Expressão Gênica/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Regulação para Cima/imunologia
15.
Pediatr Neurosurg ; 56(2): 105-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33652442

RESUMO

BACKGROUND: Endoscopic third ventriculostomy (ETV) is currently considered as an alternative to cerebrospinal fluid (CSF) shunt systems in the treatment of obstructive hydrocephalus. This procedure allows the CSF to drain in the basal cisterns and reabsorbed by arachnoid granulations, and avoiding implantation of exogenous material. AIMS AND OBJECTIVES: The purpose of this study was to assess the success rate of ETV in infants less than 1 year of age with congenital noncommunicating hydrocephalus. MATERIAL AND METHODS: This study was a 2-year prospective study from August 2017 to July 2019. ETVs were performed in 14 patients younger than 1 year with diagnosis of noncommunicating hydrocephalous. A failure was defined as the need for shunt implantation after ETV. Phase-contrast MRI of the brain was done after 6 months to see patency of ETV fenestration and CSF flow through ventriculostomy. RESULTS: ETV was tried in 18 patients and successfully performed in 14 patients. Out of the 14 patients, shunt implantation after ETV was performed in 3 patients (failed ETV). In the successful cases, etiology was idiopathic aqueductal stenosis in 8, shunt complications in 2, and 1 case was a follow-up case of occipital encephalocele; the mean age was 7.7 months (range 3-12). In the 3 failed cases, etiology was aqueductal stenosis, mean age was 7.6 months (range 3-11). In all ETVs, failed patients MPVP shunting was done. Follow-up of nonshunted patients was done from 6 to 24 months (mean 15 months). There was no mortality or permanent morbidity noted following ETV. CONCLUSION: ETV is a good surgical procedure for less than 1-year-old children.


Assuntos
Hidrocefalia , Neuroendoscopia , Terceiro Ventrículo , Criança , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia , Lactente , Estudos Prospectivos , Estudos Retrospectivos , Terceiro Ventrículo/diagnóstico por imagem , Terceiro Ventrículo/cirurgia , Resultado do Tratamento , Ventriculostomia
16.
Artigo em Inglês | MEDLINE | ID: mdl-33760681

RESUMO

The adsorptive removal of a pollutant from water is significantly affected by the presence of coexisting ions with various concentrations. Here, we have studied adsorption of arsenate [As(V)] by calcined Mg-Fe-(CO3)-LDH in the presence of different cations (Mg2+, Na+, K+, Ca2+, and Fe3+) and anions (CO32‒, Cl‒, PO43‒, SO42‒, and NO3‒) with their different concentrations to simulate the field condition. The experimental results indicated that Ca2+, Mg2+, and Fe3+ have a synergistic effect on removal efficiency of As(V), whereas PO43‒ and CO32‒ ions have a significant antagonistic impact. Overall, the order of inhibiting effect of coexisting anions on adsorption of As(V) was arrived as NO3-˂Cl-

Assuntos
Arseniatos/isolamento & purificação , Hidróxidos/química , Íons/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Arseniatos/análise , Arseniatos/química , Carbonatos/química , Íons/análise , Ferro/química , Cinética , Magnésio/química , Redes Neurais de Computação , Fosfatos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos
17.
Kidney Int ; 98(2): 391-403, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32622525

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a common cause of steroid-resistant nephrotic syndrome. Spontaneous remission of FSGS is rare and steroid-resistant FSGS frequently progresses to renal failure. Many inheritable forms of FSGS have been described, caused by mutations in proteins that are important for podocyte function. Here, we show that a basic leucine zipper transcription factor, MafB, protects against FSGS. MAFB expression was found to be decreased in the podocytes of patients with FSGS. Moreover, conditional podocyte-specific MafB-knockout mice developed FSGS with massive proteinuria accompanied by depletion of the slit diaphragm-related proteins (Nphs1 and Magi2), and the podocyte-specific transcription factor Tcf21. These findings indicate that MafB plays a crucial role in the pathogenesis of FSGS. Consistent with this, adriamycin-induced FSGS and attendant proteinuria were ameliorated by MafB overexpression in the podocytes of MafB podocyte-specific transgenic mice. Thus, MafB could be a new therapeutic target for FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Podócitos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Glomerulosclerose Segmentar e Focal/genética , Humanos , Fator de Transcrição MafB/genética , Camundongos , Camundongos Transgênicos , Síndrome Nefrótica/genética , Proteinúria/genética , Proteinúria/prevenção & controle
18.
Biochem Biophys Res Commun ; 523(2): 452-457, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31882119

RESUMO

The transcription factor, MafB, plays important role in the differentiation and functional maintenance of various cells and tissues, such as the inner ear, kidney podocyte, parathyroid gland, pancreatic islet, and macrophages. The rare heterozygous substitution (p.Leu239Pro) of the DNA binding domain in MAFB is the cause of Focal Segmental Glomerulosclerosis associated with Duane Retraction Syndrome, which is characterized by impaired horizontal eye movement due to cranial nerve maldevelopment in humans. In this research, we generated mice carrying MafB p.Leu239Pro (Mafbmt/mt) and retrieved their tissues for analysis. As a result, we found that the phenotype of Mafbmt/mt mouse was similar to that of the conventional Mafb deficient mouse. This finding suggests that the Leucine residue at 239 in the DNA binding domain plays a key role in MafB function and could contribute to the diagnosis or development of treatment for patients carrying the MafB p.Leu239Pro missense variant.


Assuntos
Orelha/patologia , Rim/patologia , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo , Mutação , Animais , Animais Recém-Nascidos , Sítios de Ligação , DNA/metabolismo , Orelha/embriologia , Humanos , Rim/embriologia , Camundongos Knockout , Camundongos Mutantes , Mutação de Sentido Incorreto , Pâncreas/patologia , Hormônio Paratireóideo/metabolismo , Fenótipo
19.
Biochem Biophys Res Commun ; 521(3): 590-595, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31679694

RESUMO

The transcription factor MafB is specifically expressed in macrophages. We have recently demonstrated that MafB is expressed in anti-inflammatory alternatively activated M2 macrophages in vitro. Tumor-associated macrophages (TAMs) are a subset of M2 type macrophages that can promote immunosuppressive activity, induce angiogenesis, and promote tumor cell proliferation. To examine whether MafB express in TAMs, we analyzed green fluorescent protein (GFP) expression in Lewis lung carcinoma tumors of MafB-GFP knock-in heterozygous mice. FACS analysis demonstrated GFP fluorescence in cells positive for macrophage-markers (F4/80, CD11b, CD68, and CD204). Moreover, quantitative RT-PCR analysis with F4/80+GFP+ and F4/80+GFP- sorted cells showed that the GFP-positive macrophages express IL-10, Arg-1, and TNF-α, which were known to be expressed in TAMs. These results indicate that MafB is expressed in TAMs. Furthermore, immunostaining analysis using an anti-MAFB antibody revealed that MAFB is expressed in CD204-and CD68-positive macrophages in human lung cancer samples. In conclusion, MafB can be a suitable marker of TAMs in both mouse and human tumor tissues.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Fator de Transcrição MafB/análise , Animais , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
20.
Curr Genomics ; 21(6): 429-443, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33093805

RESUMO

Plant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, eco-friendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/CAS9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/CAS9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/CAS9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA