Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 42(12): 2418-2432, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35105673

RESUMO

Repetitive mild traumatic brain injury (mTBI) in children and adolescents leads to acute and chronic neurologic sequelae and is linked to later life neurodegenerative disease. However, the biological mechanisms connecting early life mTBI to neurodegeneration remain unknown. Using an adolescent mouse repetitive closed head injury model that induces progressive cognitive impairment in males and anxiety in females in the absence of overt histopathology, we examined transcriptional and translational changes in neurons isolated from sham and injured brain in the chronic phase after injury. At 14 months, single-nuclei RNA sequencing of cortical brain tissue identified disruption of genes associated with neuronal proteostasis and evidence for disrupted ligand-receptor signaling networks in injured mice. Western blot analysis of isolated neurons showed evidence of inflammasome activation and downstream IL-1ß processing, as previously demonstrated in acute CNS injury models, and accumulation of misfolded, hyperphosphorylated tau, and changes in expression of proteins suggestive of impaired translation in males but not in females. At 6 months, injured IL-1 receptor 1 (IL-1R1) KO mice, which are protected from postinjury cognitive deficits, had decreased accumulation of pro-IL-1ß and misfolded tau in cortex and cerebellum, suggesting that IL-1R1 is upstream of inflammasome priming (defined as increase in pro-IL-1ß) and abnormal tau phosphorylation. Together, our findings provide evidence for neuronal inflammasome activation and impaired proteostasis as key mechanisms linking repetitive mTBI in adolescence to later life neurologic dysfunction and neurodegeneration.SIGNIFICANCE STATEMENT Repetitive mild closed head injury in adolescent male mice leads to impaired proteostasis, tau phosphorylation, and inflammasome activation in neurons later in adulthood through mechanisms involving IL-1 receptor 1. The data are the first to link repetitive mild traumatic brain injury in adolescence to neurodegeneration and suggest molecular targets and pathways to prevent neurologic sequelae in the chronic period after injuries.


Assuntos
Concussão Encefálica , Doenças Neurodegenerativas , Tauopatias , Animais , Concussão Encefálica/complicações , Concussão Encefálica/patologia , Modelos Animais de Doenças , Feminino , Inflamassomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Proteostase , Receptores de Interleucina-1 , Tauopatias/patologia
2.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477535

RESUMO

Repetitive closed head injury (rCHI) is commonly encountered in young athletes engaged in contact and collision sports. Traumatic brain injury (TBI) including rCHI has been reported to be an important risk factor for several tauopathies in studies of adult humans and animals. However, the link between rCHI and the progression of tau pathology in adolescents remains to be elucidated. We evaluated whether rCHI can trigger the initial acceleration of pathological tau in adolescent mice and impact the long-term outcomes post-injury. To this end, we subjected adolescent transgenic mice expressing the P301S tau mutation to mild rCHI and assessed tau hyperphosphorylation, tangle formation, markers of neuroinflammation, and behavioral deficits at 40 days post rCHI. We report that rCHI did not accelerate tau pathology and did not worsen behavioral outcomes compared to control mice. However, rCHI induced cortical and hippocampal microgliosis and corpus callosum astrocytosis in P301S mice by 40 days post-injury. In contrast, we did not find significant microgliosis or astrocytosis after rCHI in age-matched WT mice or sham-injured P301S mice. Our data suggest that neuroinflammation precedes the development of Tau pathology in this rCHI model of adolescent repetitive mild TBI.


Assuntos
Concussão Encefálica/metabolismo , Encéfalo/metabolismo , Tauopatias/genética , Proteínas tau/genética , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Masculino , Camundongos , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Proteínas tau/metabolismo
3.
Neurotrauma Rep ; 5(1): 462-466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666008

RESUMO

Traumatic brain injury (TBI) is independently associated with hypertension and ischemic stroke. The goal of this study was to determine the interplay between TBI and incident hypertension in the occurrence of post-TBI stroke. This prospective study used a hospital-based registry to identify patients without pre-existing comorbidities. TBI patients (n = 3664) were frequency matched on age, sex, and race to non-TBI patients (n = 1848). Follow-up started 6 months post-TBI or study entry and extended up to 10 years. To examine hypertension's role in post-TBI stroke, we used logistic regression models to calculate the effect estimates for stroke in four exposure categories that included TBI or hypertension in isolation and in combination. Second, we calculated the conditional direct effect (CDE) of TBI in models that considered hypertension as intermediary. Third, we examined whether TBI effect was modified by antihypertensive medication use. The 10-year cumulative incidence of stroke was higher in the TBI group (4.7%) than the non-TBI group (1.3%; p < 0.001). TBI patients who developed hypertension had the highest risk of stroke (odds ratio [OR] = 4.83, 95% confidence interval [CI] = 2.53-9.23, p < 0.001). The combined effect estimates were less than additive, suggesting an overlapping biological pathway. The total effect of TBI (OR = 3.16, 95% CI = 1.94-5.16, p < 0.001) was higher than the CDE that accounted for hypertension (OR = 2.45, 95% CI = 0.93-6.47, p = 0.06). Antihypertensives attenuated the TBI effect, suggesting that the TBI effect on stroke is partially mediated through hypertension. TBI is an independent risk factor for long-term stroke, and the underlying biological pathway may partly operate through TBI-precipitated hypertension. These findings suggest that screening for hypertension may mitigate stroke risk in TBI.

4.
Nat Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961225

RESUMO

APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFß and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.

5.
Front Cell Neurosci ; 17: 1322325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162004

RESUMO

The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.

6.
Nat Commun ; 14(1): 4286, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463881

RESUMO

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-ß that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Linfócitos Intraepiteliais , Masculino , Camundongos , Animais , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T , Camundongos Endogâmicos C57BL
7.
JAMA Netw Open ; 5(4): e229478, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482306

RESUMO

Importance: Increased risk of neurological and psychiatric conditions after traumatic brain injury (TBI) is well-defined. However, cardiovascular and endocrine comorbidity risk after TBI in individuals without these comorbidities and associations with post-TBI mortality have received little attention. Objective: To assess the incidence of cardiovascular, endocrine, neurological, and psychiatric comorbidities in patients with mild TBI (mTBI) or moderate to severe TBI (msTBI) and analyze associations between post-TBI comorbidities and mortality. Design, Setting, and Participants: This prospective longitudinal cohort study used hospital-based patient registry data from a tertiary academic medical center to select patients without any prior clinical comorbidities who experienced TBI from 2000 to 2015. Using the same data registry, individuals without head injuries, the unexposed group, and without target comorbidities were selected and age-, sex-, and race-frequency-matched to TBI subgroups. Patients were followed-up for up to 10 years. Data were analyzed in 2021. Exposures: Mild or moderate to severe head trauma. Main Outcomes and Measures: Cardiovascular, endocrine, neurologic, and psychiatric conditions were defined based on International Classification of Diseases, Ninth Revision (ICD-9) or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10). Associations between TBI and comorbidities, as well as associations between the comorbidities and mortality, were analyzed. Results: A total of 4351 patients with mTBI (median [IQR] age, 45 [29-57] years), 4351 patients with msTBI (median [IQR] age, 47 [30-58] years), and 4351 unexposed individuals (median [IQR] age, 46 [30-58] years) were included in analyses. In each group, 45% of participants were women. mTBI and msTBI were significantly associated with higher risks of cardiovascular, endocrine, neurologic, and psychiatric disorders compared with unexposed individuals. In particular, hypertension risk was increased in both mTBI (HR, 2.5; 95% CI, 2.1-2.9) and msTBI (HR, 2.4; 95% CI, 2.0-2.9) groups. Diabetes risk was increased in both mTBI (HR, 1.9; 95% CI, 1.4-2.7) and msTBI (HR, 1.9; 95% CI, 1.4-2.6) groups, and risk of ischemic stroke or transient ischemic attack was also increased in mTBI (HR, 2.2; 95% CI, 1.4-3.3) and msTBI (HR, 3.6; 95% CI, 2.4-5.3) groups. All comorbidities in the TBI subgroups emerged within a median (IQR) of 3.49 (1.76-5.96) years after injury. Risks for post-TBI comorbidities were also higher in patients aged 18 to 40 years compared with age-matched unexposed individuals: hypertension risk was increased in the mTBI (HR, 5.9; 95% CI, 3.9-9.1) and msTBI (HR, 3.9; 95% CI, 2.5-6.1) groups, while hyperlipidemia (HR, 2.3; 95% CI, 1.5-3.4) and diabetes (HR, 4.6; 95% CI, 2.1-9.9) were increased in the mTBI group. Individuals with msTBI, compared with unexposed patients, had higher risk of mortality (432 deaths [9.9%] vs 250 deaths [5.7%]; P < .001); postinjury hypertension (HR, 1.3; 95% CI, 1.1-1.7), coronary artery disease (HR, 2.2; 95% CI, 1.6-3.0), and adrenal insufficiency (HR, 6.2; 95% CI, 2.8-13.0) were also associated with higher mortality. Conclusions and Relevance: These findings suggest that TBI of any severity was associated with a higher risk of chronic cardiovascular, endocrine, and neurological comorbidities in patients without baseline diagnoses. Medical comorbidities were observed in relatively young patients with TBI. Comorbidities occurring after TBI were associated with higher mortality. These findings suggest the need for a targeted screening program for multisystem diseases after TBI, particularly chronic cardiometabolic diseases.


Assuntos
Lesões Encefálicas Traumáticas , Hipertensão , Transtornos Mentais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Doença Crônica , Feminino , Humanos , Hipertensão/complicações , Estudos Longitudinais , Masculino , Transtornos Mentais/etiologia , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA