RESUMO
The canonical Wnt/ß-catenin pathway governs a multitude of developmental processes in various cell lineages, including the melanocyte lineage. Indeed, ß-catenin regulates transcription of Mitf-M, the master regulator of this lineage. The first wave of melanocytes to colonize the skin is directly derived from neural crest cells, whereas the second wave of melanocytes is derived from Schwann cell precursors (SCPs). We investigated the influence of ß-catenin in the development of melanocytes of the first and second waves by generating mice expressing a constitutively active form of ß-catenin in cells expressing tyrosinase. Constitutive activation of ß-catenin did not affect the development of truncal melanoblasts but led to marked hyperpigmentation of the paws. By activating ß-catenin at various stages of development (E8.5-E11.5), we showed that the activation of ß-catenin in bipotent SCPs favored melanoblast specification at the expense of Schwann cells in the limbs within a specific temporal window. Furthermore, in vitro hyperactivation of the Wnt/ß-catenin pathway, which is required for melanocyte development, induces activation of Mitf-M, in turn repressing FoxD3 expression. In conclusion, ß-catenin overexpression promotes SCP cell fate decisions towards the melanocyte lineage.
Assuntos
Diferenciação Celular , Melanócitos/metabolismo , Células de Schwann/citologia , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Linhagem da Célula , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Melanócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Estabilidade Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células de Schwann/metabolismo , Via de Sinalização Wnt , beta Catenina/genéticaRESUMO
The c-RET proto-oncogene encodes a receptor-tyrosine kinase. Loss-of-function mutations of RET have been shown to be associated with Hirschsprung disease and Down's syndrome (HSCR-DS) in humans. DS is known to involve cerebellar hypoplasia, which is characterized by reduced cerebellar size. Despite the fact that c-Ret has been shown to be associated with HSCR-DS in humans and to be expressed in Purkinje cells (PCs) in experimental animals, there is limited information about the role of activity of c-Ret/c-RET kinase in cerebellar hypoplasia. We found that a loss-of-function mutation of c-Ret Y1062 in PCs causes cerebellar hypoplasia in c-Ret mutant mice. Wild-type mice had increased phosphorylation of c-Ret in PCs during postnatal development, while c-Ret mutant mice had postnatal hypoplasia of the cerebellum with immature neurite outgrowth in PCs and granule cells (GCs). c-Ret mutant mice also showed decreased numbers of glial fibers and mitogenic sonic hedgehog (Shh)-positive vesicles in the external germinal layer of PCs. c-Ret-mediated cerebellar hypoplasia was rescued by subcutaneous injection of a smoothened agonist (SAG) as well as by reduced expression of Patched1, a negative regulator for Shh. Our results suggest that the loss-of-function mutation of c-Ret Y1062 results in the development of cerebellar hypoplasia via impairment of the Shh-mediated development of GCs and glial fibers in mice with HSCR-DS.
Assuntos
Cerebelo/anormalidades , Síndrome de Down/genética , Doença de Hirschsprung/genética , Mutação com Perda de Função , Malformações do Sistema Nervoso/genética , Proteínas Proto-Oncogênicas c-ret/genética , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Técnicas de Introdução de Genes/métodos , Proteínas Hedgehog/metabolismo , Doença de Hirschsprung/complicações , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologiaRESUMO
BACKGROUND: The process for leather material production is carried out in developing countries using a large amount of trivalent chromium [Cr(III)]. Assesment of health risks for millions of workers in tanneries worldwide that are highly polluted with Cr(III) is needed. METHODS: Levels of total Cr and its chemical species in wastewater samples from tannery built-up areas of Bangladesh were investigated. Cr-mediated renal damage was assessed in 100 male tannery workers by epidemiological analysis consisting of questionnaires and measurements of levels of urinary Cr and urinary renal damage markers [urinary levels of total protein and kidney injury molecule-1 (KIM-1)]. RESULTS: High levels of total Cr (mean ± standard deviation = 1,908,762 ± 703,450 µg/L) were detected in wastewater samples from 13 sites of tanneries. More than 99.99% of total Cr in the wastewater was Cr(III), indicating that workers in the tanneries were exposed to large concentrations of Cr(III). Cr levels (mean ± standard, 2.89 ± 4.23 µg/g creatinine) in urine samples from the workers in tanneries were >24-fold higher than the levels in a general population previously reported. Multivariate analysis showed significant correlations between urinary levels of Cr and urinary levels of renal damage biomarkers. Nagelkerke Pseudo R2 values also showed that Cr level is the strongest contributor to the levels of renal damage biomarkers in the workers. CONCLUSION: Our results newly suggest that excess exposure to Cr(III) could be a risk for renal damage in humans.
Assuntos
Cromo , Exposição Ocupacional , Bangladesh/epidemiologia , Biomarcadores , Cromo/análise , Cromo/toxicidade , Humanos , Masculino , Exposição Ocupacional/análise , Curtume , Águas ResiduáriasRESUMO
Well water could be a stable source of drinking water. Recently, the use of well water as drinking water has been encouraged in developing countries. However, many kinds of disorders caused by toxic elements in well drinking water have been reported. It is our urgent task to resolve the global issue of element-originating diseases. In this review article, our multidisciplinary approaches focusing on oncogenic toxicities and disturbances of sensory organs (skin and ear) induced by arsenic and barium are introduced. First, our environmental monitoring in developing countries in Asia showed elevated concentrations of arsenic and barium in well drinking water. Then our experimental studies in mice and our epidemiological studies in humans showed arsenic-mediated increased risks of hyperpigmented skin and hearing loss with partial elucidation of their mechanisms. Our experimental studies using cultured cells with focus on the expression and activity levels of intracellular signal transduction molecules such as c-SRC, c-RET, and oncogenic RET showed risks for malignant transformation and/or progression arose from arsenic and barium. Finally, our original hydrotalcite-like compound was proposed as a novel remediation system to effectively remove arsenic and barium from well drinking water. Hopefully, comprehensive studies consisting of (1) environmental monitoring, (2) health risk assessments, and (3) remediation will be expanded in the field of environmental health to prevent various disorders caused by environmental factors including toxic elements in drinking water.
Assuntos
Arsênio/toxicidade , Bário/toxicidade , Água Potável/análise , Exposição Ambiental , Poluentes Químicos da Água/toxicidade , Animais , Saúde Ambiental , Monitoramento Ambiental , Humanos , Camundongos , Poços de ÁguaRESUMO
PURPOSE: Elevated hearing thresholds from high frequencies are known to be one of the hallmarks of age-related hearing loss. Our recent study showed accumulation of manganese (Mn) in inner ears resulting in acceleration of age-related hearing loss in mice orally exposed to Mn. However, there is no evidence showing an association between Mn in non-invasive biological samples and hearing loss in humans evaluated by pure tone audiometry (PTA). In this study, we evaluated Mn in non-invasive biological samples as a possible biomarker for hearing loss in humans. MATERIALS AND METHODS: We determined hearing levels by PTA and Mn levels in toenails, hair and urine with an inductively coupled plasma mass spectrometer (ICP-MS) in 145 healthy subjects in Bangladesh. RESULTS: Multivariable analyses showed that Mn levels in toenails, but not in hair and urine samples, were significantly associated with hearing loss at 8 kHz and 12 kHz. Moreover, our experimental study showed a significant correlation between Mn levels in inner ears and nails, but not hair, in mice orally exposed to Mn. CONCLUSIONS: The results provide novel evidence that Mn in toenails is a possible biomarker for hearing loss at high frequencies in humans.
Assuntos
Biomarcadores/análise , Perda Auditiva/metabolismo , Manganês/análise , Unhas/química , Adolescente , Adulto , Animais , Audiometria de Tons Puros/métodos , Bangladesh , Criança , Feminino , Cabelo/química , Perda Auditiva/diagnóstico , Humanos , Masculino , Manganês/urina , Espectrometria de Massas/métodos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Análise Multivariada , Adulto JovemRESUMO
Chronic exposure to arsenic is associated with various diseases in humans. Skin hyperpigmentation is the most sensitive objective symptom for patients with arsenicosis. However, there is very limited information about the mechanism of arsenic-mediated skin hyperpigmentation in vivo. In this study, hairless homozygous mice (Hr/Hr-mice) that drank water containing 3 and 30 µM arsenic for 2 months developed skin hyperpigmentation with increased levels of arsenic and number of melanocytes in the skin. Since it is possible for humans to be exposed to 3 µM of arsenic in well drinking water, our results suggest that the Hr/Hr-mice could be a novel model sensitively reflecting arsenic-mediated skin hyperpigmentation. We then analyzed the mechanism of arsenic-mediated skin hyperpigmentation. The epidermis of Hr/Hr-mice and human HaCaT skin keratinocytes exposed to arsenic for 2 and 4 months, respectively, showed 5.4-21.5-fold increased levels of endothelin-1 (ET-1) expression via NF-kappa B activation. Coexposure of primary normal human epithelial melanocytes to arsenic and ET-1 activated their proliferation and melanin synthesis with increased levels of MITF-M and ET-1 receptor expression. Our results suggest that interaction between keratinocytes and melanocytes in the skin through ET-1 and its receptor contributes to arsenic-mediated skin pigmentation, a hallmark of arsenicosis.
Assuntos
Arsênio/toxicidade , Endotelina-1/metabolismo , Hiperpigmentação/induzido quimicamente , NF-kappa B/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Água Potável/efeitos adversos , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Homozigoto , Humanos , Hiperpigmentação/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Camundongos Pelados , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismoRESUMO
Since well water utilized for domestic purposes in the Red River Delta of North Vietnam has been reported to be polluted by arsenic, barium, iron, and manganese, household sand filters consisting of various components are used. Information regarding the effectiveness of various sand filters for removal of the four toxic elements in well water is limited. In this study, arsenic levels in 13/20 of well water samples and 1/7 of tap water samples exceeded World Health Organization (WHO) health-based guideline value for drinking water. Moreover, 2/20, 6/20, and 4/20 of well water samples had levels exceeding the present and previous guideline levels for barium, iron, and manganese, respectively. Levels of iron and manganese, but not arsenic, in well water treated by sand filters were lower than those in untreated water, although previous studies showed that sand filters removed all of those elements from water. A low ratio of iron/arsenic in well water may not be sufficient for efficient removal of arsenic from household sand filters. The levels of barium in well water treated by sand filters, especially a filter composed of sand and charcoal, were significantly lower than those in untreated water. Thus, we demonstrated characteristics of sand filters in North Vietnam.
Assuntos
Arsênio/análise , Água Potável/análise , Filtração/métodos , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Monitoramento Ambiental , VietnãRESUMO
We have recently demonstrated that exposure to barium for a short time (≤4 days) and at a low level (5 µM = 687 µg/L) promotes invasion of human nontumorigenic HaCaT cells, which have characteristics similar to those of normal keratinocytes, suggesting that exposure to barium for a short time enhances malignant characteristics. Here we examined the effect of exposure to low level of barium for a long time, a condition mimicking the exposure to barium through well water, on malignant characteristics of HaCaT keratinocytes. Constitutive invasion activity, focal adhesion kinase (FAK) protein expression and activity, and matrix metalloproteinase 14 (MMP14) protein expression in primary cultured normal human epidermal keratinocytes, HaCaT keratinocytes, and HSC5 and A431 human squamous cell carcinoma cells were augmented following an increase in malignancy grade of the cells. Constitutive invasion activity, FAK phosphorylation, and MMP14 expression levels of HaCaT keratinocytes after treatment with 5 µM barium for 4 months were significantly higher than those of control untreated HaCaT keratinocytes. Taken together, our results suggest that exposure to a low level of barium for a long time enhances constitutive malignant characteristics of HaCaT keratinocytes via regulatory molecules (FAK and MMP14) for invasion.
Assuntos
Bário/toxicidade , Queratinócitos/efeitos dos fármacos , Poluição Química da Água/efeitos adversos , Bário/análise , Linhagem Celular , Quinase 1 de Adesão Focal/metabolismo , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Cultura Primária de Células , Vietnã , Poluição Química da Água/análise , Abastecimento de Água/análiseRESUMO
The incidence of cutaneous malignant melanoma is increasing at a greater rate than that of any other cancer in the world. However, an effective therapy for malignant melanoma has not been established. Recently, some studies have shown an antitumor effect of non-equilibrium atmospheric pressure plasmas (NEAPPs) in vitro. Here, we examined the in vivo effect of NEAPP on cell cycle regulators, key elements for malignant transformation, in spontaneously developed benign melanocytic tumors in a hairless animal model. NEAPP irradiation decreased expression levels of cell cycle promoters, Cyclin D1, E1 and E2, and increased expression level of a cell cycle repressor, p27(KIP) (1) . Cyclin D1, E1 and E2 and p27(KIP) expression levels were associated with malignant transformation of the benign tumor in the animal model. Our results suggest that NEAPP irradiation suppresses malignant transformation of a benign melanocytic tumor via control of the expression levels of cell cycle regulators.
Assuntos
Argônio/uso terapêutico , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Nevo Pigmentado/genética , Proteínas Proto-Oncogênicas c-ret/genética , Radioterapia/métodos , Neoplasias Cutâneas/genética , Animais , Pressão Atmosférica , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/efeitos da radiação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/efeitos da radiação , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Camundongos Pelados , Camundongos Transgênicos , Nevo Pigmentado/patologia , Nevo Pigmentado/radioterapia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/radioterapiaRESUMO
Krishna et al. (Arch Toxicol 88(1):47-64, 2014) recently published the results of a study in which adult C57BL/6 mice were subchronically exposed to 400,000 µg/L manganese (Mn) using manganese chloride via drinking water for 8 weeks and examined the neurotoxic effects. After 5 weeks of Mn exposure, significant deposition of Mn in all of the brain regions examined by magnetic resonance imaging was detected. After 6 weeks of Mn exposure, neurobehavioral deficits in an open field test, a grip strength test, and a forced swim test were observed. Eight weeks of Mn exposure increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, but did not alter the levels of striatal dopamine, its metabolites and serotonin. Krishna et al. also reported significant increases in mRNA levels of GFAP (an astrocyte activation marker), HO-1 (an oxidative stress marker) and NOS2 (a nitrosative stress marker), and in protein expression level of GFAP in the substantia nigra pars reticulata after 8 weeks of Mn exposure. These results suggest that 400,000 µg/L Mn exposure via drinking water in mice induces neurobehavioral deficits, serotonergic imbalance, and glial activation accompanied by an increase in brain Mn deposition. The report by Krishna et al. is interesting because the studies on the neurobehavioral effect of Mn exposure by drinking water in mice are very limited. However, Mn concentrations previously reported in well drinking water (Agusa et al. in Vietnam Environ Pollut 139(1):95-106, 2006; Buschmann et al. in Environ Int 34(6):756-764, 2008; Hafeman et al. in Environ Health Perspect 115(7):1107-1112, 2007; Wasserman et al. in Bangladesh Environ Health Perspect 114(1):124-129, 2006) were lower than 400,000 µg/L.
Assuntos
Encéfalo/efeitos dos fármacos , Manganês/toxicidade , Síndromes Neurotóxicas/patologia , Animais , MasculinoRESUMO
Due to the increased ultraviolet radiation, the incidence of melanoma is increasing worldwide more than that of any other cancer. In this study, the effects of irradiation of non-thermal atmospheric pressure plasmas (NEAPPs) on benign melanocytic tumors from our original hairless model mice (HL-RET-mice), in which benign melanocytic tumors and melanomas spontaneously develop in the skin stepwise, were examined. Expression levels of melanoma cell adhesion molecule (MCAM) and matrix metalloproteinase-2 (MMP-2) mRNA in melanomas were higher than those in benign melanocytic tumors in the mice. Repeated irradiation of non-thermal atmospheric pressure plasmas (NEAPPs) for the benign tumors decreased the expression levels of MCAM and MMP-2 mRNA in the tumors from the mice. Previous studies showed that MCAM sites are upstream of MMP-2, that MCAM regulates transcription of MMP-2 in melanoma cells and that MMP-2 is associated with the conversion of a benign tumor to a malignant tumor. Therefore, our results suggest that the NEAPP irradiation-mediated decrease in the expression level of MMP-2 in benign melanocytic tumors is associated with decreased expression levels of MCAM. Moreover, NEAPP irradiation might be a potential candidate for therapy to prevent melanoma development through suppression of malignant conversion in benign melanocytic tumors.
Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/radioterapia , Gases em Plasma/uso terapêutico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/radioterapia , Animais , Pressão Atmosférica , Antígeno CD146/genética , Antígeno CD146/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Pelados , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Various carcinomas including skin cancer are explosively increasing in arsenicosis patients who drink arsenic-polluted well water, especially in Bangladesh. Although well drinking water in the cancer-prone areas contains various elements, very little is known about the effects of elements except arsenic on carcinogenicity. In order to clarify the carcinogenic effects of coexposure to arsenic and iron, anchorage-independent growth and invasion in human untransformed HaCaT and transformed A431 keratinocytes were examined. Since the mean ratio of arsenic and iron in well water was 1:10 in cancer-prone areas of Bangladesh, effects of 1 µM arsenic and 10 µM iron were investigated. Iron synergistically promoted arsenic-mediated anchorage-independent growth in untransformed and transformed keratinocytes. Iron additionally increased invasion in both types of keratinocytes. Activities of c-SRC and ERK that regulate anchorage-independent growth and invasion were synergistically enhanced in both types of keratinocytes. Our results suggest that iron promotes arsenic-mediated transformation of untransformed keratinocytes and progression of transformed keratinocytes. We then developed a low-cost and high-performance adsorbent composed of a hydrotalcite-like compound for arsenic and iron. The adsorbent rapidly reduced concentrations of both elements from well drinking water in cancer-prone areas of Bangladesh to levels less than those in WHO health-based guidelines for drinking water. Thus, we not only demonstrated for the first time increased carcinogenicity by coexposure to arsenic and iron but also proposed a novel remediation system for well drinking water.
Assuntos
Hidróxido de Alumínio/farmacologia , Arsenitos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Quelantes/farmacologia , Água Potável/efeitos adversos , Recuperação e Remediação Ambiental/métodos , Compostos de Ferro/toxicidade , Queratinócitos/efeitos dos fármacos , Hidróxido de Magnésio/farmacologia , Neoplasias Cutâneas/induzido quimicamente , Compostos de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Bangladesh , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Água Potável/análise , Sinergismo Farmacológico , Monitoramento Ambiental , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Compostos de Ferro/análise , Queratinócitos/metabolismo , Queratinócitos/patologia , Invasividade Neoplásica , Medição de Risco , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/prevenção & controle , Poluentes Químicos da Água/análise , Quinases da Família src/metabolismoRESUMO
Impairments of hearing and balance are major problems in the field of occupational and environmental health. Such impairments have previously been reported to be caused by genetic and environmental factors. However, their mechanisms have not been fully clarified. On the other hand, the inner ear contains spiral ganglion neurons (SGNs) in the organ of Corti, which serve as the primary carriers of auditory information from sensory cells to the auditory cortex in the cerebrum. Inner ears also contain a vestibule in the vicinity of the organ of Corti-one of the organs responsible for balance. Thus, inner ears could be a good target to clarify the pathogeneses of sensorineural hearing losses and impaired balance. In our previous studies with c-Ret knock-in mice and Endothelin receptor B (Ednrb) knock-out mice, it was found that syndromic hearing losses involved postnatal neurodegeneration of SGNs caused by impairments of c-Ret and Ednrb, which play important roles in neuronal development and maintenance of the enteric nervous system. The organ of Corti and the vestibule in inner ears also suffer from degeneration caused by environmental stresses including noise and heavy metals, resulting in impairments of hearing and balance. In this review, we introduce impairments of hearing and balance caused by genetic and environmental factors and focus on impairments of SGNs and the vestibule in inner ears as the pathogeneses caused by these factors.
Assuntos
Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/patologia , Gânglio Espiral da Cóclea/patologia , Animais , Meio Ambiente , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Humanos , Metais Pesados/toxicidade , Camundongos , Equilíbrio Postural/efeitos da radiação , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Som/efeitos adversos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/efeitos da radiaçãoRESUMO
Aims: There has been a shortage of human studies to elucidate the association between serum arsenic levels and the prevalence of hypertension. This study multidirectionally investigated associations among arsenic exposure, dietary ingestion, and the risk of hypertension by combined human epidemiological and mouse experimental studies. Methods and results: This study focused on the total arsenic level in fasting serum, a biomarker of arsenic exposure. Associations among ingestion frequencies of 54 diet items of Japanese food separated into six categories, total arsenic level in fasting serum, and the prevalence of hypertension were investigated in 2709 general people in Japan. Logistic regression analysis demonstrated a dose-dependent association between serum arsenic level and hypertension and a positive association between the ingestion of fish meat and hypertension. Further analysis showed that the latter association was fully mediated by increased fasting serum arsenic levels in humans. Similarly, oral exposure to the putative human-equivalent dose of arsenic species mixture with the same ratios in a common fish meat in Japan increased systolic blood pressure and arsenic levels in fasting serum in mice. Conclusion: This interdisciplinary approach suggests that fish-meat ingestion is a potential risk factor for arsenic-mediated hypertension. Because the increased consumption of fish meat is a recent global trend, health risks of the increased ingestion of arsenic via fish meat should be further investigated.
RESUMO
Impairments of endothelin receptor B (Ednrb/EDNRB) cause the development of Waardenburg-Shah syndrome with congenital hearing loss, hypopigmentation, and megacolon disease in mice and humans. Hearing loss in Waardenburg-Shah syndrome has been thought to be caused by an Ednrb-mediated congenital defect of melanocytes in the stria vascularis (SV) of inner ears. Here we show that Ednrb expressed in spiral ganglion neurons (SGNs) in inner ears is required for postnatal development of hearing in mice. Ednrb protein was expressed in SGNs from WT mice on postnatal day 19 (P19), whereas it was undetectable in SGNs from WT mice on P3. Correspondingly, Ednrb homozygously deleted mice (Ednrb(-/-) mice) with congenital hearing loss showed degeneration of SGNs on P19 but not on P3. The congenital hearing loss involving neurodegeneration of SGNs as well as megacolon disease in Ednrb(-/-) mice were markedly improved by introducing an Ednrb transgene under control of the dopamine ß-hydroxylase promoter (Ednrb(-/-);DBH-Ednrb mice) on P19. Neither defects of melanocytes nor hypopigmentation in the SV and skin in Ednrb(-/-) mice was rescued in the Ednrb(-/-);DBH-Ednrb mice. Thus, the results of this study indicate a novel role of Ednrb expressed in SGNs distinct from that in melanocytes in the SV contributing partially to postnatal hearing development.
Assuntos
Audição/fisiologia , Neurônios/metabolismo , Receptores de Endotelina/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Animais , Perda Auditiva/genética , Perda Auditiva/metabolismo , Humanos , Melanócitos/metabolismo , Camundongos , Camundongos Knockout , Pigmentação/genética , Receptores de Endotelina/genética , Gânglio Espiral da Cóclea/crescimento & desenvolvimentoRESUMO
Our fieldwork showed more than 1 µM (145.1 µg/L) barium in about 3 µM (210.7 µg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 µg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 µM) on arsenic (3 µM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.
Assuntos
Apoptose/efeitos dos fármacos , Arsênio/toxicidade , Bário/farmacologia , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/metabolismo , Proteínas Inibidoras de Apoptose/farmacologia , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Chronic arsenic exposure from drinking water causes a variety of diseases and it is now recognized that at least 140 million people in 50 countries have been drinking water containing arsenic at levels above the WHO provisional guideline value of 10 µg/L. Long-term exposure to arsenic is associated with various types of cancers in humans including skin cancers. However, there is limited information on key molecules regulating arsenic-promoted carcinogenesis, and methods for the prevention and therapy of arsenic-promoted carcinogenesis have not yet been fully developed. Our in vitro study in human nontumorigenic HaCaT skin keratinocytes showed that calcitriol (activated vitamin D3, 1,25(OH)2D3) inhibited arsenic-mediated anchorage-independent growth with downregulations of cancer-related activation of MEK, ERK1/2 and AKT and activity of cell cycle. Moreover, calcitriol significantly repressed arsenic uptake in HaCaT cells with inhibition of expressions of aquaporin genes (AQP7, 9 and 10) which were modified by arsenic exposure. VDR, a vitamin D receptor, expression was significantly increased by arsenic exposure whereas calcitriol had no effect on its expression. These results suggest that treatment of calcitriol inhibits arsenic uptake via suppressions of aquaglyceroporin gene expressions resulting in inhibition of arsenic-promoted tumorigenesis in keratinocytes.
RESUMO
Mitf has been reported to play a crucial role in regulating the differentiation of pigment cells in homeothermal animals, i.e. the melanocytes and the retinal pigment epithelium (RPE). However, less is known about the functions of Mitf in the developing RPE. To elucidate such functions, we introduced wild-type and dominant-negative Mitf expression vectors into chick optic vesicles by electroporation. Over-expression of wild-type Mitf altered neural retina cells to become RPE-like and repressed the expression of neural retina markers in vivo. In contrast, dominant-negative Mitf inhibited pigmentation in the RPE. The percentage of BrdU-positive cells decreased during normal RPE development, which was followed by Mitf protein expression. The percentage of BrdU-positive cells decreased in the wild-type Mitf-transfected neural retina, but increased in the dominant-negative Mitf-transfected RPE. p27(kip1), one of the cyclin-dependent kinase inhibitors, begins to be expressed in the proximal region of the RPE at stage 16. Transfection of wild-type Mitf induced expression of p27(kip1), while transfection of dominant-negative Mitf inhibited p27(kip1) expression. We found that Mitf was associated with the endogenous p27(kip1) 5' flanking region. These results demonstrate for the first time "in vivo" that Mitf uniquely regulates both differentiation and cell proliferation in the developing RPE.
Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Fator de Transcrição Associado à Microftalmia/metabolismo , Epitélio Pigmentado da Retina , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Biomarcadores/metabolismo , Embrião de Galinha , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
REarranged during Transition (RET) is a tyrosine kinase associated with the development of several malignancies. Identification of RET kinase inhibitors promises valuable therapeutic tools for the intervention of RET-driven tumors. Most currently available tyrosine kinase inhibitors target the ATP binding site, but there are several drawbacks of these ATP-competitive drugs. Therefore, there is a need to develop new kinase inhibitors with alternative mechanisms of action. We have previously reported that a conserved cysteine in the MXXCW motif of RET is crucial to the disulfide-bonded dimerization-linked activation of RET kinases. Reagents which bind to this cysteine may inhibit the activity of RET kinases through disulfide-bond mediated dimerization. Here, we examine the potential of MXXCW motif-containing peptides as candidate kinase inhibitors. We demonstrate that MXXCW motif-containing peptides bind to RET in a redox-sensitive manner and block enzymatic activity, causing inhibition of the RET-dependent activity of extracellular signal-regulated kinases and effectively reducing the malignant potential of RET-papillary thyroid carcinoma-1 (PTC)-expressing cells. These motif-containing peptides were also found to be effective against the drug resistant mutant of RET. The inhibition of RET kinase activity by these peptides resulted in suppression of RET-PTC-1-mediated cancer growth. The great potency of these cysteine targeted peptides could indicate promising approaches for novel molecular-targeted therapies for RET-associated cancers.
RESUMO
Hair graying is a representative sign of aging in animals and humans. However, the mechanism for hair graying with aging remains largely unknown. In this study, we found that the microscopic appearance of hair follicles without melanocyte stem cells (MSCs) and descendant melanocytes as well as macroscopic appearances of hair graying in RET-transgenic mice carrying RET oncogene (RET-mice) are in accordance with previously reported results for hair graying in humans. Therefore, RET-mice could be a novel model mouse line for age-related hair graying. We further showed hair graying with aging in RET-mice associated with RET-mediated acceleration of hair cycles, increase of senescent follicular keratinocyte stem cells (KSCs), and decreased expression levels of endothelin-1 (ET-1) in bulges, decreased endothelin receptor B (Ednrb) expression in MSCs, resulting in a decreased number of follicular MSCs. We then showed that hair graying in RET-mice was accelerated by congenitally decreased Ednrb expression in MSCs in heterozygously Ednrb-deleted RET-mice [Ednrb(+/-);RET-mice]. We finally partially confirmed common mechanisms of hair graying with aging in mice and humans. Taken together, our results suggest that age-related dysfunction between ET-1 in follicular KSCs and endothelin receptor B (Ednrb) in follicular MSCs via cumulative hair cycles is correlated with hair graying with aging.