Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 13(12)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092142

RESUMO

The "collective length" in VO2 metal-insulator transitions is identified by controlling nanoscale dopant distribution in thin films. The crossover from the local transition to the collective transition is observed, which originates from the increased instability of the metal-insulator domain boundary. This instability renders the transition collective within the "collective length", which will enable the design of collective electronic devices.

2.
Phys Chem Chem Phys ; 19(44): 29913-29917, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087413

RESUMO

Strong electron-correlations can result in un-conventional transportation behaviour, such as metal-insulator transitions, high temperature superconductivity and bad metal conduction. Here we report a distinct transportation characteristic achieved by actively coupling the carriers with randomly distributed lattice-dipoles for strain-distorted SrNbxTi1-xO3. The strong electron correlations split the conduction band, and lead to a distinguished thermal-emitted carrier transportation with an activation energy of ∼10-2 eV. Further consistency was demonstrated by the respective changes in orbital configurations observed in near edge X-ray absorption fine structures. The present investigation demonstrates new mechanisms for regulating the carrier transportation using polaronic electron correlations.

3.
Nano Lett ; 15(3): 1622-6, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25654211

RESUMO

We demonstrate that the electrical conductivity of metal/semiconductor oxide heterojunctions can be increased over 7 orders of magnitude by inserting an ultrathin layer of LaAlO3. This counterintuitive result, that an interfacial barrier can be driven transparent by inserting a wide-gap insulator, arises from the large internal electric field between the two polar LaAlO3 surfaces. This field modifies the effective band offset in the device, highlighting the ability to design the electrostatic boundary conditions with atomic precision.

4.
Nat Mater ; 10(3): 198-201, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21258354

RESUMO

'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

5.
Sci Rep ; 12(1): 1150, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064156

RESUMO

Research on various neuro-inspired technologies has received much attention. However, while higher-order neural functions such as recognition have been emphasized, the fundamental properties of neural circuits as advanced control systems have not been fully exploited. Here, we applied the functions of central pattern generators, biological neural circuits for motor control, to the control technology of switching circuits for extremely power-saving terminal edge devices. By simply applying a binary waveform with an arbitrary temporal pattern to the transistor gate, low-power and real-time switching control can be achieved. This binary pattern generator consists of a specially designed spiking neuron circuit that generates spikes after a pre-programmed wait time in the six-order range, but consumes negligible power, with an experimental record of 1.2 pW per neuron. This control scheme has been successfully applied to voltage conversion circuits consuming only a few nanowatts, providing an ultra-low power technology for trillions of self-powered edge systems.

6.
Nano Lett ; 10(7): 2588-91, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20518539

RESUMO

Biased conducting-tip atomic force microscopy (AFM) has been shown to write and erase nanoscale metallic lines at the LaAlO(3)/SrTiO(3) interface. Using various AFM modes, we show the mechanism of conductivity switching is the writing of surface charge. These charges are stably deposited on a wide range of LaAlO(3) thicknesses, including bulk crystals. A strong asymmetry with writing polarity was found for 1 and 2 unit cells of LaAlO(3), providing experimental evidence for a theoretically predicted built-in potential.

7.
Adv Mater ; 32(6): e1905060, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31854486

RESUMO

The discovery of hydrogen-induced electron localization and highly insulating states in d-band electron correlated perovskites has opened a new paradigm for exploring novel electronic phases of condensed matters and applications in emerging field-controlled electronic devices (e.g., Mottronics). Although a significant understanding of doping-tuned transport properties of single crystalline correlated materials exists, it has remained unclear how doping-controlled transport properties behave in the presence of planar defects. The discovery of an unexpected high-concentration doping effect in defective regions is reported for correlated nickelates. It enables electronic conductance by tuning the Fermi-level in Mott-Hubbard band and shaping the lower Hubbard band state into a partially filled configuration. Interface engineering and grain boundary designs are performed for Hx SmNiO3 /SrRuO3 heterostructures, and a Mottronic device is achieved. The interfacial aggregation of hydrogen is controlled and quantified to establish its correlation with the electrical transport properties. The chemical bonding between the incorporated hydrogen with defective SmNiO3 is further analyzed by the positron annihilation spectroscopy. The present work unveils new materials physics in correlated materials and suggests novel doping strategies for developing Mottronic and iontronic devices via hydrogen-doping-controlled orbital occupancy in perovskite heterostructures.

8.
Nat Commun ; 10(1): 5312, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757949

RESUMO

Two-dimensional heterostructures combined with vertical geometries are candidates to probe and utilize the physical properties of atomically-thin materials. The vertical configuration enables a unique form of hot-carrier spectroscopy as well as atomic-scale devices. Here, we present the room-temperature evolution of heteroepitaxial perovskite hot-electron transistors using a SrRuO3 base down to the monolayer limit (∼4 Å). As a fundamental electronic probe, we observe an abrupt transition in the hot-electron mean free path as a function of base thickness, coinciding with the thickness-dependent resistive transition. As a path towards devices, we demonstrate the integrated synthesis of perovskite one-dimensional electrical edge contacts using water-soluble and growth-compatible Sr3Al2O6 hard masks. Edge-contacted monolayer-base transistors exhibit on/off ratios reaching ∼108, complete electrostatic screening by the base manifesting pure hot-electron injection, and excellent scaling of the output current density with device dimensions. These results open new avenues for incorporating emergent phenomena at oxide interfaces and in heterostructures.

9.
Nat Commun ; 6: 10104, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26657761

RESUMO

The next generation of electronics is likely to incorporate various functional materials, including those exhibiting ferroelectricity, ferromagnetism and metal-insulator transitions. Metal-insulator transitions can be controlled by electron doping, and so incorporating such a material in transistor channels will enable us to significantly modulate transistor current. However, such gate-controlled metal-insulator transitions have been challenging because of the limited number of electrons accumulated by gate dielectrics, or possible electrochemical reaction in ionic liquid gate. Here we achieve a positive-bias gate-controlled metal-insulator transition near the transition temperature. A significant number of electrons were accumulated via a high-permittivity TiO2 gate dielectric with subnanometre equivalent oxide thickness in the inverse-Schottky-gate geometry. An abrupt transition in the VO2 channel is further exploited, leading to a significant current modulation far beyond the capacitive coupling. This solid-state operation enables us to discuss the electrostatic mechanism as well as the collective nature of gate-controlled metal-insulator transitions, paving the pathway for developing functional field effect transistors.

10.
Nat Commun ; 6: 6759, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25849738

RESUMO

The concept 'the interface is the device' is embodied in a wide variety of interfacial electronic phenomena and associated applications in oxide materials, ranging from catalysts and clean energy systems to emerging multifunctional devices. Many device properties are defined by the band alignment, which is often influenced by interface dipoles. On the other hand, the ability to purposefully create and control interface dipoles is a relatively unexplored degree of freedom for perovskite oxides, which should be particularly effective for such ionic materials. Here we demonstrate tuning the band alignment in perovskite metal-semiconductor heterojunctions over a broad range of 1.7 eV. This is achieved by the insertion of positive or negative charges at the interface, and the resultant dipole formed by the induced screening charge. This approach can be broadly used in applications where decoupling the band alignment from the constituent work functions and electron affinities can enhance device functionality.

11.
Nat Commun ; 5: 3464, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24632721

RESUMO

Electronic changes at polar interfaces between transition metal oxides offer the tantalizing possibility to stabilize novel ground states yet can also cause unintended reconstructions in devices. The nature of these interfacial reconstructions should be qualitatively different for metallic and insulating films as the electrostatic boundary conditions and compensation mechanisms are distinct. Here we directly quantify with atomic-resolution the charge distribution for manganite-titanate interfaces traversing the metal-insulator transition. By measuring the concentration and valence of the cations, we find an intrinsic interfacial electronic reconstruction in the insulating films. The total charge observed for the insulating manganite films quantitatively agrees with that needed to cancel the polar catastrophe. As the manganite becomes metallic with increased hole doping, the total charge build-up and its spatial range drop substantially. Direct quantification of the intrinsic charge transfer and spatial width should lay the framework for devices harnessing these unique electronic phases.

12.
Sci Rep ; 3: 1274, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23429420

RESUMO

Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at -1.9 V, increasing to 2.02 ± 0.16 u.c. at -1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA