RESUMO
Spray drying is appropriate for the preservation of halophilic microorganisms due to the nature of these microorganisms, as they survive in adverse environmental conditions by being encapsulated in salt crystals. Artificial neural networks were in this study used to optimize practically significant spray-drying regimes of the C50-carotenoids producer Halobacterium salinarum. Immediately after drying, the samples contained up to 54% halobacterial biomass and less than 5% moisture, and the level of preservation of carotenoids was 95-97%. The storage of biomass at 4 °C resulted in the gradual degradation of the carotenoids, which reached 58-64% in the best samples after 1 year. A comprehensive study of changes in halobacteria biomass after spray drying and the nature of the damage provided new data on the survival and preservation of cells and biologically active substances in the various spray-drying regimes and at different storage times.
Assuntos
Carotenoides/biossíntese , Dessecação/métodos , Halobacterium salinarum/metabolismo , Algoritmos , Carotenoides/análise , Halobacterium salinarum/química , Técnicas Microbiológicas/métodosRESUMO
Dihydroquercetin (DHQ) is a representative of flavonoids that is available on the market as a food supplement and registered as an active pharmaceutical ingredient. The structure of this compound is characterized by the presence of two chiral centers in positions 2 and 3 of the pyranone ring. Current regulatory documentation on DHQ lacks quantitative analysis of the stereoisomers of this flavanonol. This poses potential risks for consumers of DHQ-based dietary supplements and developers of new drugs. This review was conducted to systematize data on the pharmacology of DHQ stereoisomers and the possible methods of controlling them in promising chiral drugs. We found that relying on literature data of polarimetry for the identification of DHQ stereoisomers is currently impossible due to these heterogeneities. NMR spectroscopy allows to distinguishing between trans- and cis-DHQ using chemical shifts values. Only HPLC is currently characterized by sufficient enantioselectivity. Regarding pharmacology, the most active stereoisomer of DHQ should be identified, if the substituents in chiral centers both take part in binding with the biological target. The significant impact of stereochemical structure on the pharmacokinetics of DHQ isomers was reported. The question about these toxicity of these compounds remains open. The results of the conducted review of scientific literature indicate the necessity of revising the pharmacology of DHQ taking into account its stereoisomerism.
RESUMO
The method for producing AgNPs by granules of activated sludge micromycetes with enhanced tolerance to metal ion toxicity - Penicillium glabrum, Fusarium nivale and Fusarium oxysporum has been developed; the optimum conditions for AgNP biosynthesis being found: the Ag+ ion concentration, duration of the contact of microbial cells with silver ions, a growth phase of microorganisms, medium composition, a ÑÐ value, mixing conditions, and also lighting intensity. The effect of Cl-, SO42- and HPO42- ions binding Ag+ ions was eliminated, that brought to significant increase of the yield of NPs. Under batch conditions, silver particles of 60-110 nanometers in size were formed with a 65% yield. It was established that the nanoparticles were covered with microbial cell membrane proteins composed up to 70% by weight of the NPs that prevented their aggregation. In addition, it was the first time stable AgNPs had been formed by continuous AgNP biosynthesis by living cells of F. oxysporum with an 80% yield for a long time.