Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Microbiol ; 26(6): e16663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881221

RESUMO

Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG Microcoleus, while the pinnacle-shaped structures have a higher abundance of Elainellacea MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing Nitrospiracea and amoA genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.


Assuntos
Bactérias , Cianobactérias , Lagos , Metagenômica , Regiões Antárticas , Lagos/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/metabolismo , Microbiota/genética , Filogenia , Sedimentos Geológicos/microbiologia , Metagenoma , Genoma Bacteriano , Archaea/genética , Archaea/classificação , Archaea/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(11): 5694-5705, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32094168

RESUMO

Blooms of Zygnematophycean "glacier algae" lower the bare ice albedo of the Greenland Ice Sheet (GrIS), amplifying summer energy absorption at the ice surface and enhancing meltwater runoff from the largest cryospheric contributor to contemporary sea-level rise. Here, we provide a step change in current understanding of algal-driven ice sheet darkening through quantification of the photophysiological mechanisms that allow glacier algae to thrive on and darken the bare ice surface. Significant secondary phenolic pigmentation (11 times the cellular content of chlorophyll a) enables glacier algae to tolerate extreme irradiance (up to ∼4,000 µmol photons⋅m-2⋅s-1) while simultaneously repurposing captured ultraviolet and short-wave radiation for melt generation. Total cellular energy absorption is increased 50-fold by phenolic pigmentation, while glacier algal chloroplasts positioned beneath shading pigments remain low-light-adapted (Ek ∼46 µmol photons⋅m-2⋅s-1) and dependent upon typical nonphotochemical quenching mechanisms for photoregulation. On the GrIS, glacier algae direct only ∼1 to 2.4% of incident energy to photochemistry versus 48 to 65% to ice surface melting, contributing an additional ∼1.86 cm water equivalent surface melt per day in patches of high algal abundance (∼104 cells⋅mL-1). At the regional scale, surface darkening is driven by the direct and indirect impacts of glacier algae on ice albedo, with a significant negative relationship between broadband albedo (Moderate Resolution Imaging Spectroradiometer [MODIS]) and glacier algal biomass (R2 = 0.75, n = 149), indicating that up to 75% of the variability in albedo across the southwestern GrIS may be attributable to the presence of glacier algae.


Assuntos
Camada de Gelo , Microalgas/fisiologia , Elevação do Nível do Mar , Retroalimentação Fisiológica , Groenlândia , Microalgas/metabolismo , Fotossíntese
3.
New Phytol ; 229(2): 783-790, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32813888

RESUMO

From global food security to textile production and biofuels, the demands currently made on plant photosynthetic productivity will continue to increase. Enhancing photosynthesis using designer, green and sustainable materials offers an attractive alternative to current genetic-based strategies and promising work with nanomaterials has recently started to emerge. Here we describe the in planta use of carbon-based nanoparticles produced by low-cost renewable routes that are bioavailable to mature plants. Uptake of these functionalised nanoparticles directly from the soil improves photosynthesis and also increases crop production. We show for the first time that glucose functionalisation enhances nanoparticle uptake, photoprotection and pigment production, unlocking enhanced yields. This was demonstrated in Triticum aestivum 'Apogee' (dwarf bread wheat) and resulted in an 18% increase in grain yield. This establishes the viability of a functional nanomaterial to augment photosynthesis as a route to increased crop productivity.


Assuntos
Carbono , Glucose , Produção Agrícola , Fotossíntese , Triticum
4.
Mol Ecol ; 27(24): 5279-5293, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30565777

RESUMO

Cyanobacteria are important photoautotrophs in extreme environments such as the McMurdo Dry Valleys, Antarctica. Terrestrial Antarctic cyanobacteria experience constant darkness during the winter and constant light during the summer which influences the ability of these organisms to fix carbon over the course of an annual cycle. Here, we present a unique approach combining community structure, genomic and photophysiological analyses to understand adaptation to Antarctic light regimes in the cyanobacterium Leptolyngbya sp. BC1307. We show that Leptolyngbya sp. BC1307 belongs to a clade of cyanobacteria that inhabits near-surface environments in the McMurdo Dry Valleys. Genomic analyses reveal that, unlike close relatives, Leptolyngbya sp. BC1307 lacks the genes necessary for production of the pigment phycoerythrin and is incapable of complimentary chromatic acclimation, while containing several genes responsible for known photoprotective pigments. Photophysiology experiments confirmed Leptolyngbya sp. BC1307 to be tolerant of short-term exposure to high levels of photosynthetically active radiation, while sustained exposure reduced its capacity for photoprotection. As such, Leptolyngbya sp. BC1307 likely exploits low-light microenvironments within cyanobacterial mats in the McMurdo Dry Valleys.


Assuntos
Cianobactérias/genética , Cianobactérias/fisiologia , Fotossíntese , Filogenia , Adaptação Fisiológica , Regiões Antárticas , Genômica , Luz , Ficoeritrina/genética , Pigmentos Biológicos/genética
5.
Bioscience ; 67(2): 118-133, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596614

RESUMO

The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm.

6.
Sci Total Environ ; 831: 154616, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35307433

RESUMO

Impacts of widespread release of engineered titanium dioxide nanoparticles (nTiO2) on freshwater phytoplankton and phytobenthic assemblages in the field, represents a significant knowledge gap. Using outdoor experiments, we quantified impacts of nTiO2 on phytoplankton and periphyton from UK rivers, applied at levels representative of environmentally realistic concentrations (0.05 mg/L) and hot spots of accumulation (5.0 mg/L). Addition of nTiO2 to river water led to rapid temporal size changes in homoagglomerates and many heteroaggregates of nTiO2 with cells in the phytoplankton, including green algae, pennate and centric diatoms, increasing settlement of some cells. Changes in phytoplankton composition were evident after 72-h resulting from a significant decline in the relative abundance of very small phytoplankton cells (1-3 µm), often accompanied by increases in centric diatoms at both concentrations. Significant changes detected in the composition of the phytobenthos after 12 days, following nTiO2 treatments, were not evident when using benthic diatoms alone after 56 days. A lack of inhibition in the maximum quantum yield (Fv/Fm) in phytobenthos after 72-h exposures contrasted with a significant inhibition in Fv/Fm in 75% of phytoplankton samples, the highest recorded in Rutile nTiO2 exposures at both concentrations of nTiO2. After 12 days, strong positive stimulatory responses were recorded in the maximum relative electron transport rate (rETRmax) and the maximum non-photochemical coefficient (NPQmax), in phytoplankton and phytobenthos samples exposed to the higher Anatase nTiO2 concentration, were not measured in Rutile exposed biota. Collectively, these results indicate that the Rutile phase of nTiO2 has more negative impacts on freshwater algae than the Anatase form, at specific time scales, and phytoplankton may be more impacted by nTiO2 than phytobenthos. We caution that repeated release of nTiO2, could lead to significant changes in riverine algal biomass and species composition, dependent on the phase and concentration of nTiO2.


Assuntos
Diatomáceas , Nanopartículas , Nanopartículas/química , Fitoplâncton , Titânio/química , Titânio/toxicidade
7.
Front Plant Sci ; 12: 673614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262580

RESUMO

Glacier algae residing within the surface ice of glaciers and ice sheets play globally significant roles in biogeochemical cycling, albedo feedbacks, and melt of the world's cryosphere. Here, we present an assessment of the macro-nutrient stoichiometry of glacier algal assemblages from the southwestern Greenland Ice Sheet (GrIS) margin, where widespread glacier algal blooms proliferate during summer melt seasons. Samples taken during the mid-2019 ablation season revealed overall lower cellular carbon (C), nitrogen (N), and phosphorus (P) content than predicted by standard microalgal cellular content:biovolume relationships, and elevated C:N and C:P ratios in all cases, with an overall estimated C:N:P of 1,997:73:1. We interpret lower cellular macro-nutrient content and elevated C:N and C:P ratios to reflect adaptation of glacier algal assemblages to their characteristic oligotrophic surface ice environment. Such lower macro-nutrient requirements would aid the proliferation of blooms across the nutrient poor cryosphere in a warming world. Up-scaling of our observations indicated the potential for glacier algal assemblages to accumulate ∼ 29 kg C km2 and ∼ 1.2 kg N km2 within our marginal surface ice location by the mid-ablation period (early August), confirming previous modeling estimates. While the long-term fate of glacier algal autochthonous production within surface ice remains unconstrained, data presented here provide insight into the possible quality of dissolved organic matter that may be released by assemblages into the surface ice environment.

8.
Nat Commun ; 12(1): 570, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495440

RESUMO

Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet's southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.


Assuntos
Eutrofização/fisiologia , Camada de Gelo , Microalgas/crescimento & desenvolvimento , Minerais/metabolismo , Fósforo/metabolismo , Biomassa , Ecossistema , Congelamento , Geografia , Aquecimento Global , Groenlândia , Gelo , Microalgas/citologia , Microalgas/ultraestrutura , Microscopia Eletrônica de Varredura , Estações do Ano
9.
Front Microbiol ; 11: 607251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362751

RESUMO

Antarctic perennially ice-covered lakes provide a stable low-disturbance environment where complex microbially mediated structures can grow. Lake Untersee, an ultra-oligotrophic lake in East Antarctica, has the lake floor covered in benthic microbial mat communities, where laminated organo-sedimentary structures form with three distinct, sympatric morphologies: small, elongated cuspate pinnacles, large complex cones and flat mats. We examined the diversity of prokaryotes and eukaryotes in pinnacles, cones and flat microbial mats using high-throughput sequencing of 16S and 18S rRNA genes and assessed how microbial composition may underpin the formation of these distinct macroscopic mat morphologies under the same environmental conditions. Our analysis identified distinct clustering of microbial communities according to mat morphology. The prokaryotic communities were dominated by Cyanobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes, and Actinobacteria. While filamentous Tychonema cyanobacteria were common in all mat types, Leptolyngbya showed an increased relative abundance in the pinnacle structures only. Our study provides the first report of the eukaryotic community structure of Lake Untersee benthic mats, which was dominated by Ciliophora, Chlorophyta, Fungi, Cercozoa, and Discicristata. The eukaryote richness was lower than for prokaryote assemblages and no distinct clustering was observed between mat morphologies. These findings suggest that cyanobacterial assemblages and potentially other bacteria and eukaryotes may influence structure morphogenesis, allowing distinct structures to form across a small spatial scale.

10.
Front Microbiol ; 10: 1366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333595

RESUMO

Current research into bacterial dynamics on the Greenland Ice Sheet (GrIS) is biased toward cryoconite holes, despite this habitat covering less than 8% of the ablation (melt) zone surface. In contrast, the expansive surface ice, which supports wide-spread Streptophyte micro-algal blooms thought to enhance surface melt, has been relatively neglected. This study aims to understand variability in bacterial abundance and production across an ablation season on the GrIS, in relation to micro-algal bloom dynamics. Bacterial abundance reached 3.3 ± 0.3 × 105 cells ml-1 in surface ice and was significantly linearly related to algal abundances during the middle and late ablation periods (R 2 = 0.62, p < 0.05; R 2 = 0.78, p < 0.001). Bacterial production (BP) of 0.03-0.6 µg C L-1 h-1 was observed in surface ice and increased in concert with glacier algal abundances, indicating that heterotrophic bacteria consume algal-derived dissolved organic carbon. However, BP remained at least 28 times lower than net primary production, indicating inefficient carbon cycling by heterotrophic bacteria and net accumulation of carbon in surface ice throughout the ablation season. Across the supraglacial environment, cryoconite sediment BP was at least four times greater than surface ice, confirming that cryoconite holes are the true "hot spots" of heterotrophic bacterial activity.

11.
ACS Nano ; 13(10): 11049-11061, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31525960

RESUMO

Zinc oxide engineered nanomaterials (ZnO ENMs) are used in a variety of applications worldwide due to their optoelectronic and antibacterial properties with potential contaminant risk to the environment following their disposal. One of the main potential pathways for ZnO nanomaterials to reach the environment is via urban wastewater treatment plants. So far there is no technique that can provide spatiotemporal nanoscale information about the rates and mechanisms by which the individual nanoparticles transform. Fundamental knowledge of how the surface chemistry of individual particles change, and the heterogeneity of transformations within the system, will reveal the critical physicochemical properties determining environmental damage and deactivation. We applied a methodology based on spatially resolved in situ X-ray fluorescence microscopy (XFM), allowing observation of real-time dissolution and morphological and chemical evolution of synthetic template-grown ZnO nanorods (∼725 nm length, ∼140 nm diameter). Core-shell ZnO-ZnS nanostructures were formed rapidly within 1 h, and significant amounts of ZnS species were generated, with a corresponding depletion of ZnO after 3 h. Diffuse nanoparticles of ZnS, Zn3(PO4)2, and Zn adsorbed to Fe-oxyhydroxides were also imaged in some nonsterically impeded regions after 3 h. The formation of diffuse nanoparticles was affected by ongoing ZnO dissolution (quantified by inductively coupled plasma mass spectrometry) and the humic acid content in the simulated sludge. Complementary ex situ X-ray absorption spectroscopy and scanning electron microscopy confirmed a significant decrease in the ZnO contribution over time. Application of time-resolved XFM enables predictions about the rates at which ZnO nanomaterials transform during their first stages of the wastewater treatment process.

12.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334248

RESUMO

Cryoconite is a matrix of sediment, biogenic polymer and a microbial community that resides on glacier surfaces. The phototrophic component of this community is well adapted to this extreme environment, including high light stress. Photoacclimation of the cryoconite phototrophic community on Longyearbreen, Svalbard, was investigated using in situ variable chlorophyll fluorescence. Rapid light curves (RLCs) and induction-recovery curves were used to analyse photosystem II quantum efficiency, relative electron transport rate and forms of downregulation including non-photochemical quenching (NPQ) and state transitions in cyanobacteria. Phototrophs used a combination of behavioural and physiological photochemical downregulation. Behavioural downregulation is hypothesised to incorporate chloroplast movement and cell or filament positioning within the sediment matrix in order to shade from high light, which resulted in a lack of saturation of RLCs and hence overestimation of productivity. Physiological downregulation likely consisted of biphasic NPQ, comprising a steadily induced light-dependent form and a light-independent NPQ that was not reversed with decreasing light intensity. State transitions by cyanobacteria were the most likely physiological downregulation employed by cyanobacteria within the mixed phototroph community. These findings demonstrate that cryoconite phototrophs combine multiple forms of physiological and behavioural downregulation to optimise light exposure and maximise photosynthetic productivity. This plasticity of photoacclimation enables them to survive productively in the high-light stress environment on the ice surface.


Assuntos
Aclimatação/fisiologia , Cianobactérias/metabolismo , Transporte de Elétrons/fisiologia , Microbiota/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Regiões Árticas , Clorofila/metabolismo , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Luz , Svalbard
13.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222222

RESUMO

The living prokaryotic microbiome of the calcified geniculate (articulated) red alga, Corallina officinalis from the intertidal seashore is characterised for the first time based on the V6 hypervariable region of 16S rRNA. Results revealed an extraordinary diversity of bacteria associated with the microbiome. Thirty-five prokaryotic phyla were recovered, of which Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Acidobacteria, Verrucomicrobia, Firmicutes and Chloroflexi made up the core microbiome. Unclassified sequences made up 25% of sequences, suggesting insufficient sampling of the world's oceans/macroalgae. The greatest diversity in the microbiome was on the upper shore, followed by the lower shore then the middle shore, although the microbiome community composition did not vary between shore levels. The C. officinalis core microbiome was broadly similar in composition to those reported in the literature for crustose coralline algae (CCAs) and free-living rhodoliths. Differences in relative abundance of the phyla between the different types of calcified macroalgal species may relate to the intertidal versus subtidal habit of the taxa and functionality of the microbiome components. The results indicate that much work is needed to identify prokaryotic taxa, and to determine the nature of the relationship of the bacteria with the calcified host spatially, temporally and functionally.


Assuntos
Microbiota , Rodófitas/microbiologia , Actinobacteria/genética , Bactérias/genética , Bacteroidetes/genética , Chloroflexi/genética , Cianobactérias/genética , Proteobactérias/genética , RNA Ribossômico 16S/genética
14.
ISME J ; 6(12): 2302-13, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23018772

RESUMO

Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.


Assuntos
Cianobactérias/fisiologia , Camada de Gelo/microbiologia , Microalgas/fisiologia , Fotossíntese , Isótopos de Carbono/análise , Clorofila/análise , Congelamento , Groenlândia , Microespectrofotometria , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA