Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 80, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481222

RESUMO

BACKGROUND: Spathaspora passalidarum is a yeast with the highly effective capability of fermenting several monosaccharides in lignocellulosic hydrolysates, especially xylose. However, this yeast was shown to be sensitive to furfural released during pretreatment and hydrolysis processes of lignocellulose biomass. We aimed to improve furfural tolerance in a previously isolated S. passalidarum CMUWF1-2, which presented thermotolerance and no detectable glucose repression, via adaptive laboratory evolution (ALE). RESULTS: An adapted strain, AF2.5, was obtained from 17 sequential transfers of CMUWF1-2 in YPD broth with gradually increasing furfural concentration. Strain AF2.5 could tolerate higher concentrations of furfural, ethanol and 5-hydroxymethyl furfuraldehyde (HMF) compared with CMUWF1-2 while maintaining the ability to utilize glucose and other sugars simultaneously. Notably, the lag phase of AF2.5 was 2 times shorter than that of CMUWF1-2 in the presence of 2.0 g/l furfural, which allowed the highest ethanol titers to be reached in a shorter period. To investigate more in-depth effects of furfural, intracellular reactive oxygen species (ROS) accumulation was observed and, in the presence of 2.0 g/l furfural, AF2.5 exhibited 3.41 times less ROS accumulation than CMUWF1-2 consistent with the result from nuclear chromatins diffusion, which the cells number of AF2.5 with diffuse chromatins was also 1.41 and 1.24 times less than CMUWF1-2 at 24 and 36 h, respectively. CONCLUSIONS: An enhanced furfural tolerant strain of S. passalidarum was achieved via ALE techniques, which shows faster and higher ethanol productivity than that of the wild type. Not only furfural tolerance but also ethanol and HMF tolerances were improved.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Xilose , Furaldeído , Espécies Reativas de Oxigênio , Furilfuramida , Fermentação , Glucose , Etanol , Cromatina
2.
Biosci Biotechnol Biochem ; 88(5): 461-474, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38366612

RESUMO

My research interest has so far been focused on metabolisms related to the "membrane" of microorganisms, such as the respiratory chain, membrane proteins, sugar uptake, membrane stress and cell lysis, and fermentation. These basic metabolisms are important for the growth and survival of cell, and their knowledge can be used for efficient production of useful materials. Notable achievements in research on metabolisms are elucidation of the structure and function of membrane-bound glucose dehydrogenase as a primary enzyme in the respiratory chain, elucidation of ingenious expression regulation of several operons or by divergent promoters, elucidation of stress-induced programed-cell lysis and its requirement for survival during a long-term stationary phase, elucidation of molecular mechanism of survival at a critical high temperature, elucidation of thermal adaptation and its limit, isolation of thermotolerant fermenting yeast strains, and development of high-temperature fermentation and green energy production technologies. These achievements are described together in this review.


Assuntos
Membrana Celular , Fermentação , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Bactérias/metabolismo , Bactérias/genética , Transporte de Elétrons
3.
Appl Environ Microbiol ; 88(6): e0200621, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080905

RESUMO

The intrinsic mechanism of the thermotolerance of Kluyveromyces marxianus was investigated by comparison of its physiological and metabolic properties at high and low temperatures. After glucose consumption, the conversion of ethanol to acetic acid became gradually prominent only at a high temperature (45°C) and eventually caused a decline in viability, which was prevented by exogenous glutathione. Distinct levels of reactive oxygen species (ROS), glutathione, and NADPH suggest a greater accumulation of ROS and enhanced ROS-scavenging activity at a high temperature. Fusion and fission forms of mitochondria were dominantly observed at 30°C and 45°C, respectively. Consistent results were obtained by temperature upshift experiments, including transcriptomic and enzymatic analyses, suggesting a change of metabolic flow from glycolysis to the pentose phosphate pathway. The results of this study suggest that K. marxianus survives at a high temperature by scavenging ROS via metabolic change for a period until a critical concentration of acetate is reached. IMPORTANCE Kluyveromyces marxianus, a thermotolerant yeast, can grow well at temperatures over 45°C, unlike Kluyveromyces lactis, which belongs to the same genus, or Saccharomyces cerevisiae, which is a closely related yeast. K. marxianus may thus bear an intrinsic mechanism to survive at high temperatures. This study revealed the thermotolerant mechanism of the yeast, including ROS scavenging with NADPH, which is generated by changes in metabolic flow.


Assuntos
Kluyveromyces , Termotolerância , Fermentação , Kluyveromyces/genética , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/fisiologia , Temperatura
4.
BMC Microbiol ; 22(1): 164, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751041

RESUMO

BACKGROUND: 2,3-Butanediol (2,3-BD), a valuable compound used for chemicals, cosmetics, pesticides and pharmaceuticals, has been produced by various microbes. However, no high-temperature fermentation of the compound at high productivity has been reported. METHODS: Thermotolerant xylose-utilizing microbes were isolated from 6 different districts in Laos and screened for a low accumulation of xylitol in a xylose medium at 37 ˚C. One isolate was found to produce 2,3-BD and identified by 16S rDNA sequencing. The 2,3-BD fermentation capacity was investigated at different temperatures using xylose and glucose as carbon sources, and the fermentation parameters were determined by a high-performance liquid chromatography system. RESULTS: By screening for a low accumulation of xylitol in a xylose medium, one isolate that accumulated almost no xylitol was obtained. Further analyses revealed that the isolate is Cronobacter sakazakii and that it has the ability to produce 2,3-BD at high temperatures. When xylose and glucose were used, this strain, named C. sakazakii OX-25, accumulated 2,3-BD in a short period before the complete consumption of these sugars and then appeared to convert 2,3-BD to acetoin. The optimum temperature of the 2,3-BD fermentation was 42 ˚C to 45 ˚C, and the maximum yield of 2,3-BD was 0.3 g/g at 12 h in 20 g/l xylose medium and 0.4 g/g at 6 h in 20 g/l glucose medium at 42 ˚C. The 2,3-BD productivity of the strain was higher than the 2,3-BD productivities of other non-genetically engineered microorganisms reported previously, and the highest productivity was 0.6 g/l·h and 1.2 g/l·h for xylose and glucose, respectively. CONCLUSIONS: Among thermotolerant microbes isolated in Laos, we discovered a strain, C. sakazakii OX-25, that can convert xylose and glucose to 2,3-BD with high efficiency and high productivity at high temperatures, suggesting that C. sakazakii OX-25 has the potential for industrial application to produce 2,3-BD as an important platform chemical.


Assuntos
Cronobacter sakazakii , Xilose , Butileno Glicóis , Fermentação , Glucose/química , Xilitol
5.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926096

RESUMO

The SOS response is induced upon DNA damage and the inhibition of Z ring formation by the product of the sulA gene, which is one of the LexA-regulated genes, allows time for repair of damaged DNA. On the other hand, severely DNA-damaged cells are eliminated from cell populations. Overexpression of sulA leads to cell lysis, suggesting SulA eliminates cells with unrepaired damaged DNA. Transcriptome analysis revealed that overexpression of sulA leads to up-regulation of numerous genes, including soxS. Deletion of soxS markedly reduced the extent of cell lysis by sulA overexpression and soxS overexpression alone led to cell lysis. Further experiments on the SoxS regulon suggested that LpxC is a main player downstream from SoxS. These findings suggested the SulA-dependent cell lysis (SDCL) cascade as follows: SulA→SoxS→LpxC. Other tests showed that the SDCL cascade pathway does not overlap with the apoptosis-like and mazEF cell death pathways.


Assuntos
Dano ao DNA/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Amidoidrolases/metabolismo , Apoptose/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Dano ao DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Serina Endopeptidases/metabolismo , Transativadores/metabolismo
6.
Appl Microbiol Biotechnol ; 104(2): 475-488, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31781815

RESUMO

Among the so-called non-conventional yeasts, Kluyveromyces marxianus has extremely potent traits that are suitable for industrial applications. Indeed, it has been used for the production of various enzymes, chemicals, and macromolecules in addition to utilization of cell biomass as nutritional materials, feed and probiotics. The yeast is expected to be an efficient ethanol producer with advantages over Saccharomyces cerevisiae in terms of high growth rate, thermotolerance and a wide sugar assimilation spectrum. Results of comprehensive analyses of its genome and transcriptome may accelerate studies for applications of the yeast and may further increase its potential by combination with recent biotechnological tools including the CRISPR/Cas9 system. We thus review published studies by merging with information obtained from comprehensive data including genomic and transcriptomic data, which would be useful for future applications of K. marxianus.


Assuntos
Biotecnologia/métodos , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Microbiologia Industrial/métodos , Kluyveromyces/genética , Kluyveromyces/metabolismo , Engenharia Metabólica/métodos
7.
Biosci Biotechnol Biochem ; 84(5): 1047-1055, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31900061

RESUMO

The thermophilic hydrogenotrophic methanogen Methanothermobacter sp. CaT2 aggregates by itself. CaT2 is known to have a surface sugar layer and extracellular proteins that may be related to its aggregation. Aggregation-enhanced mutants, CHA001 and CHA002, were isolated after repeated cultivation for more than two years. When treated with proteinase K, CHA001 and CaT2 similarly exhibited a very low degree of aggregation and CHA002 exhibited less aggregation but still retained aggregation, suggesting protein-based aggregation via extracellular proteins in both CHA001 and CHA002, presumably via a putative membrane-bound and extracellularly protruding protein, MTCT_1020, identified previously. Genomic analysis revealed that CHA001 and CHA002 shared a missense mutation of MTCT_1348 and had distinct mutations. These results suggested that the MTCT_1348 mutation provides subsidiary support to the adhesive function of extracellular proteins and that there is an additional mutation(s) in CHA002 for the non-proteinous aggregation capability.


Assuntos
Genoma Arqueal , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Mutação , Proteínas Arqueais/metabolismo , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , Espaço Extracelular/metabolismo , Metano/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Contraste de Fase , Sequenciamento Completo do Genoma
8.
Appl Microbiol Biotechnol ; 103(1): 395-410, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30397769

RESUMO

To analyze the glucose repression mechanism in the thermotolerant yeast Kluyveromyces marxianus, disrupted mutants of genes for Mig1 and Rag5 as orthologs of Mig1 and Hxk2, respectively, in Saccharomyces cerevisiae were constructed, and their characteristics were compared with those of the corresponding mutants of S. cerevisiae. MIG1 mutants of both yeasts exhibited more resistance than the corresponding parental strains to 2-deoxyglucose (2-DOG). Histidine was found to be essential for the growth of Kmmig1, but not that of Kmrag5, suggesting that MIG1 is required for histidine biosynthesis in K. marxianus. Moreover, Kmrag5 and Schxk2 were more resistant than the corresponding MIG1 mutant to 2-DOG, and only the latter increased the utilization speed of sucrose in the presence of glucose. Kmrag5 exhibited very low activities for gluco-hexokinase and hexokinase and, unlike Schxk2, showed very slow growth and a low level of ethanol production in a glucose medium. Furthermore, Kmrag5, but not Kmmig1, exhibited high inulinase activity in a glucose medium and exhibited greatly delayed utilization of accumulated fructose in the medium containing both glucose and sucrose. Transcription analysis revealed that the expression levels of INU1 for inulinase and GLK1 for glucokinase in Kmrag5 were higher than those in the parental strain; the expression level of INU1 in Kmmig1 was higher, but the expression levels of RAG1 for a low-affinity glucose transporter in Kmmig1 and Kmrag5 were lower. These findings suggest that except for regulation of histidine biosynthesis, Mig1 and Rag5 of K. marxianus play similar roles in the regulation of gene expression and share some functions with Mig1 and Hxk2, respectively, in S. cerevisiae.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Kluyveromyces/fisiologia , Aminoácidos/metabolismo , Desoxiglucose/metabolismo , Proteínas Fúngicas/genética , Teste de Complementação Genética , Glucose/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Mutação , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sacarose/metabolismo
9.
Antonie Van Leeuwenhoek ; 112(7): 975-990, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30666530

RESUMO

A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevisiae DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box-Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH4)2SO4 of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48-73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH4)2SO4 by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.


Assuntos
Etanol/metabolismo , Melaço/microbiologia , Saccharomyces cerevisiae/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Temperatura Alta , Microbiologia Industrial , Melaço/análise , Mutagênese , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Raios Ultravioleta
10.
Biosci Biotechnol Biochem ; 83(7): 1362-1371, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919743

RESUMO

The basic functions of a propionate-oxidizing bacterium Pelotomaculum thermopropionicum flagellum, such as motility and chemotaxis, have not been studied. To investigate its motility, we compared with that of Syntrophobacter fumaroxidans, an aflagellar propionate-oxidizing bacterium, in soft agar medium. P. thermopropionicum cells spread, while S. fumaroxidans cells moved downward slightly, indicating flagellum-dependent motility in P. thermopropionicum SI. The motility of P. thermopropionicum was inhibited by the addition of carbonyl cyanide m-chlorophenyl hydrazone, a proton uncoupler, which is consistent with the fact that stator protein, MotB of P. thermopropionicum, shared sequence homology with proton-type stators. In addition, 5-N-ethyl-N-isopropyl amiloride, an Na+ channel blocker, showed no inhibitory effect on the motility. Furthermore, motAB of P. thermopropionicum complemented the defective swimming ability of Escherichia coli ∆motAB. These results suggest that the motility of P. thermopropionicum SI depends on the proton-type flagellar motor.


Assuntos
Deltaproteobacteria/metabolismo , Flagelos/metabolismo , Peptococcaceae/metabolismo , Escherichia coli/genética
11.
BMC Microbiol ; 18(1): 73, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005621

RESUMO

BACKGROUND: Efficient bioconversion of lignocellulosic biomass to bioethanol is one of key challenges in the situation of increasing bioethanol demand. The ethanologenic microbes for such conversion are required to possess abilities of utilization of various sugars including xylose and arabinose in lignocellulosic biomass. As required additional characteristics, there are a weak or no glucose repression that allows cells to simultaneously utilize various sugars together with glucose and thermotolerance for fermentation at high temperatures, which has several advantages including reduction of cooling cost. Spathaspora passalidarum ATCC MYA-4345, a type strains, isolated previously have mainly of these abilities or characteristics but its thermotolerance is not so strong and its glucose repression on xylose utilization is revealed. RESULTS: Newly isolated S. passalidarum CMUWF1-2 was found to have a high ability to produce ethanol from various sugars included in lignocellulosic biomass at high temperatures. The strain achieved ethanol yields of 0.43 g, 0.40 g and 0.20 g ethanol/g xylose at 30 °C, 37 °C and 40 °C, respectively. Interestingly, no significant glucose repression was observed in experiments with mixed sugars, being consistent with the strong resistance to 2-deoxyglucose, and antimycin A showed no effect on its growth in xylose medium. Moreover, the strain was tolerant to glucose and ethanol at concentrations up to 35.0% (w/v) and 8.0% (v/v), respectively. CONCLUSIONS: S. passalidarum CMUWF1-2 was shown to achieve efficient production of ethanol from various sugars and a high ethanol yield from xylose with little accumulation of xylitol. The strain also exhibited stress-resistance including thermotolerance and no detectable glucose repression as beneficial characteristics. Therefore, S. passalidarum CMUWF1-2 has remarkable potential for conversion of lignocellulosic biomass to bioethanol.


Assuntos
Etanol/metabolismo , Glucose/metabolismo , Saccharomycetales/metabolismo , Termotolerância/fisiologia , Xilose/metabolismo , Biomassa , Repressão Catabólica , Meios de Cultura , Fermentação , Glucose/química , Lignina/metabolismo , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/fisiologia
12.
Biosci Biotechnol Biochem ; 80(4): 655-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26566045

RESUMO

Environmental adaptation is considered as one of the most challenging subjects in biology to understand evolutionary or ecological diversification processes and in biotechnology to obtain useful microbial strains. Temperature is one of the important environmental stresses; however, microbial adaptation to higher temperatures has not been studied extensively. For industrial purposes, the use of thermally adapted strains is important, not only to reduce the cooling expenses of the fermentation system, but also to protect fermentation production from accidental failure of thermal management. Recent progress in next-generation sequencing provides a powerful tool to track the genomic changes of the adapted strains and allows us to compare genomic DNA sequences of conventional strains with those of their closely related thermotolerant strains. In this article, we have attempted to summarize our recent approaches to produce thermotolerant strains by thermal adaptation and comparative genomic analyses of Acetobacter pasteurianus for high-temperature acetic acid fermentations, and Zymomonas mobilis and Kluyveromyces marxianus for high-temperature ethanol fermentations. Genomic analysis of the adapted strains has found a large number of mutations and/or disruptions in highly diversified genes, which could be categorized into groups related to cell surface functions, ion or amino acid transporters, and some transcriptional factors. Furthermore, several phenotypic and genetic analyses revealed that the thermal adaptation could lead to decreased ROS generation in cells that produce higher ROS levels at higher temperatures. Thus, it is suggested that the thermally adapted cells could become robust and resistant to many stressors, and thus could be useful for high-temperature fermentations.


Assuntos
Adaptação Fisiológica , Fermentação , Genoma Bacteriano , Genoma Fúngico , Temperatura Alta , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Acetobacter/fisiologia , Elementos de DNA Transponíveis , Kluyveromyces/genética , Kluyveromyces/metabolismo , Kluyveromyces/fisiologia
13.
Antonie Van Leeuwenhoek ; 108(1): 173-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25980834

RESUMO

Thermotolerant inulin-utilizing yeast strains were successfully isolated in this study. Among the isolated strains, Kluyveromyces marxianus DBKKU Y-102 was found to be the most effective strain for direct ethanol fermentation at high temperature from fresh Jerusalem artichoke (JA) tubers without inulin hydrolysis under consolidated bioprocessing (CBP). The maximum ethanol concentrations produced by this strain under the optimum culture conditions were 104.83 and 97.46 g L(-1) at 37 and 40 °C, respectively. Data from this study clearly demonstrated that the use of thermotolerant inulin-utilizing yeast K. marxianus for ethanol production from fresh JA tubers in the CBP process not only provided high levels of ethanol, but also could eliminate the addition of external enzyme for inulin hydrolysis, which might lead to the reduction of operating costs. The expression of genes involved in carbohydrate metabolism in K. marxianus DBKKU Y-102 during ethanol fermentation was investigated by real-time RT-PCR, and the results revealed that expression levels were distinctive depending on the growth phase and growth conditions. However, among the genes tested, adh4 and tdh2 were highly expressed under high temperature conditions in both exponential- and stationary-growth phases, suggesting that these genes might play a crucial role in acquiring thermotolerance ability in this organism under stress conditions.


Assuntos
Etanol/metabolismo , Helianthus/metabolismo , Helianthus/microbiologia , Inulina/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/metabolismo , Perfilação da Expressão Gênica , Kluyveromyces/genética , Redes e Vias Metabólicas/genética , Tubérculos/metabolismo , Tubérculos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura
14.
Sci Rep ; 14(1): 5563, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448501

RESUMO

Byproducts from the sugarcane manufacturing process, specifically sugarcane molasses (SM) and sugarcane bagasse (SB), can be used as alternative raw materials for sorbitol production via the biological fermentation process. This study investigated the production of sorbitol from SM and sugarcane bagasse hydrolysate (SBH) using a thermally adapted Zymomonas mobilis ZM AD41. Various combinations of SM and SBH on sorbitol production using batch fermentation process were tested. The results revealed that SM alone (FM1) or a mixture of SM and SBH at a ratio of 3:1 (FM2) based on the sugar mass in the raw material proved to be the best condition for sorbitol production by ZM AD41 at 37 °C. Further optimization conditions for sorbitol production revealed that a sugar concentration of 200 g/L and a CaCl2 concentration of 5.0 g/L yielded the highest sorbitol content. The maximum sorbitol concentrations produced by ZM AD41 in the fermentation medium containing SM (FM1) or a mixture of SM and SBH (FM2) were 31.23 and 30.45 g/L, respectively, comparable to those reported in the literature using sucrose or a mixture of sucrose and maltose as feedstock. These results suggested that SBH could be used as an alternative feedstock to supplement or blend with SM for sustainable sorbitol production. In addition, the fermentation conditions established in this study could also be applied to large-scale sorbitol production. Moreover, the thermally adapted Z. mobilis ZM AD41 is also a promising sorbitol-producing bacterium for large-scale production at a relatively high fermentation temperature using agricultural byproducts, specifically SM and SB, as feedstock, which could reduce the operating cost due to minimizing the energy required for the cooling system.


Assuntos
Saccharum , Zymomonas , Celulose , Sorbitol , Melaço , Maltose , Sacarose
15.
Genes Cells ; 17(3): 234-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22251246

RESUMO

A large number of Escherichia coli cells become viable but nonculturable at early stationary phase, most of which are directed to lysis in cells with an enhanced active σ(E) level. In this study, we examined the effect of small noncoding RNAs, MicA and RybB, as σ(E) regulon as well as regulators of outer membrane protein (Omp) genes, on the lysis process. micA- and rybB-disrupted mutations almost completely suppressed the cell lysis. Increased expression of micA and rybB or disrupted mutation of ompA, ompC and ompW led to a significant level of cell lysis. The suppression by Mg(2+) was found to maintain the integrity of the Omp-repressed outer membrane. Taken together, the results suggest that the cell lysis proceeds in the cascade of σ(E) → expression of micA and rybB → reduction in Omp proteins → disintegration of the outer membrane.


Assuntos
Proteínas de Bactérias/genética , Bacteriólise/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , Fator sigma/genética , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/efeitos dos fármacos , Magnésio/metabolismo , Magnésio/farmacologia , Pequeno RNA não Traduzido/genética , Regulon/genética , Deleção de Sequência
16.
Antonie Van Leeuwenhoek ; 103(4): 933-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23338601

RESUMO

By random integrative mutagenesis with a kanMX4 cassette in Kluyveromyces marxianus DMKU 3-1042, we obtained three mutants of COX15, ATP25 and CYC3 encoding a cytochrome oxidase assembly factor (singleton), a transcription factor required for assembly of the Atp9p subunit of mitochondrial ATP synthase and cytochrome c heme lyase, respectively, as mutants lacking growth capability on xylose and/or arabinose. They exhibited incapability of growth on non-fermentable carbon sources, such as acetate or glycerol, and thermosensitiveness. Their biomass formation in glucose medium was reduced, but ethanol yields were increased with a high ethanol level in the medium, compared to those of the parental strain. Experiments with respiratory inhibitors showed that cox15 and cyc3, but not atp25, were able to grow in glucose medium containing antimycin A and that the atp25 mutant was KCN-resistant. Activities of NADH and ubiquinol oxidases in membrane fractions of each mutant became a half of that of the parent and negligible, respectively, and their remaining NADH oxidase activities were found to be resistant to KCN. Absolute absorption spectral analysis revealed that the peak corresponding to a + a 3 was very small in atp25 and negligible in cox15 and cyc3. These findings suggest that the K. marxianus strain possesses an alternative KCN-resistant oxidase that is located between primary dehydrogenases and the ubiquinone pool and that the respiratory activity is essential for utilization of pentoses.


Assuntos
Kluyveromyces/metabolismo , Pentoses/metabolismo , Etanol/metabolismo , Deleção de Genes , Glucose/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Mutagênese Insercional , Oxirredução , Oxirredutases/metabolismo , Ubiquinona/metabolismo
17.
Microbes Environ ; 38(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081625

RESUMO

Propionate oxidation in Pelotomaculum thermopropionicum is performed under a thermodynamic limit. The most energetically unfavorable reaction in the propionate oxidation pathway is succinate oxidation. Based on previous genomic and transcriptomic ana-lyses, succinate oxidation in P. thermopropionicum under propionate-oxidizing conditions is conducted by the membrane-bound forms of two succinate dehydrogenases (SDHs). We herein examined the activity of SDH, the mechanisms underlying the succinate oxidation reaction in P. thermopropionicum, and the importance of the protein sequences of related genes. SDH activity was highly localized to the membrane fraction. An ana-lysis of the soluble fraction revealed that fumarate reductase received electrons from NADH, suggesting the involvement of membrane-bound SDH in propionate oxidation. We utilized an uncoupler and inhibitors of adenosine triphosphate (ATP) synthase and membrane-bound SDH to investigate whether the membrane potential of P. thermopropionicum supports propionate oxidation alongside hydrogen production. These chemicals inhibited hydrogen production, indicating that membrane-bound SDH requires a membrane potential for succinate oxidation, and this membrane potential is maintained by ATP synthase. In addition, the phylogenetic distribution of the flavin adenine dinucleotide-binding subunit and conserved amino acid sequences of the cytochrome b subunit of SDHs in propionate-oxidizing bacteria suggests that membrane-bound SDHs possess specific conserved amino acid residues that are strongly associated with efficient succinate oxidation in syntrophic propionate-oxidizing bacteria.


Assuntos
Propionatos , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Propionatos/metabolismo , Potenciais da Membrana , Filogenia , Oxirredução , Bactérias/metabolismo , Succinatos/metabolismo , Ácido Succínico , Trifosfato de Adenosina/metabolismo , Hidrogênio/metabolismo
18.
Sci Rep ; 13(1): 21000, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017261

RESUMO

Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.


Assuntos
Ácido Acético , Saccharum , Celulose/metabolismo , Etanol , Saccharomyces cerevisiae/metabolismo , Biomassa , Furaldeído , Saccharum/metabolismo , Fermentação
19.
Sci Rep ; 13(1): 7859, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188725

RESUMO

Several raw materials have been used as partial supplements or entire replacements for the main ingredients of kombucha to improve the biological properties of the resulting kombucha beverage. This study used pineapple peels and cores (PPC), byproducts of pineapple processing, as alternative raw materials instead of sugar for kombucha production. Kombuchas were produced from fusions of black tea and PPC at different ratios, and their chemical profiles and biological properties, including antioxidant and antimicrobial activities, were determined and compared with the control kombucha without PPC supplementation. The results showed that PPC contained high amounts of beneficial substances, including sugars, polyphenols, organic acids, vitamins, and minerals. An analysis of the microbial community in a kombucha SCOBY (Symbiotic Cultures of Bacteria and Yeasts) using next-generation sequencing revealed that Acetobacter and Komagataeibacter were the most predominant acetic acid bacteria. Furthermore, Dekkera and Bacillus were also the prominent yeast and bacteria in the kombucha SCOBY. A comparative analysis was performed for kombucha products fermented using black tea and a fusion of black tea and PPC, and the results revealed that the kombucha made from the black tea and PPC infusion exhibited a higher total phenolic content and antioxidant activity than the control kombucha. The antimicrobial properties of the kombucha products made from black tea and the PPC infusion were also greater than those of the control. Several volatile compounds that contributed to the flavor, aroma, and beneficial health properties, such as esters, carboxylic acids, phenols, alcohols, aldehydes, and ketones, were detected in kombucha products made from a fusion of black tea and PPC. This study shows that PPC exhibits high potential as a supplement to the raw material infusion used with black tea for functional kombucha production.


Assuntos
Acetobacteraceae , Ananas , Anti-Infecciosos , Camellia sinensis , Chá/química , Bebidas/análise , Leveduras , Antioxidantes/análise , Fenóis/análise , Anti-Infecciosos/análise , Fermentação
20.
Sci Rep ; 12(1): 13965, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978081

RESUMO

High-temperature ethanol fermentation by thermotolerant yeast is considered a promising technology for ethanol production, especially in tropical and subtropical regions. In this study, optimization conditions for high-temperature ethanol fermentation of pineapple waste hydrolysate (PWH) using a newly isolated thermotolerant yeast, Saccharomyces cerevisiae HG1.1, and the expression of genes during ethanol fermentation at 40 °C were carried out. Three independent variables, including cell concentration, pH, and yeast extract, positively affected ethanol production from PWH at 40 °C. The optimum levels of these significant factors evaluated using response surface methodology (RSM) based on central composite design (CCD) were a cell concentration of 8.0 × 107 cells/mL, a pH of 5.5, and a yeast extract concentration of 4.95 g/L, yielding a maximum ethanol concentration of 36.85 g/L and productivity of 3.07 g/L. Gene expression analysis during high-temperature ethanol fermentation using RT-qPCR revealed that the acquisition of thermotolerance ability and ethanol fermentation efficiency of S. cerevisiae HG1.1 are associated with genes responsible for growth and ethanol stress, oxidative stress, acetic acid stress, DNA repair, the pyruvate-to-tricarboxylic acid (TCA) pathway, and the pyruvate-to-ethanol pathway.


Assuntos
Ananas , Termotolerância , Ananas/genética , Ananas/metabolismo , Etanol/metabolismo , Fermentação , Expressão Gênica , Piruvatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Termotolerância/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA