Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 59(11): 1386-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22041075

RESUMO

Histone deacetylase inhibitor (HDACI), suberoylanilide hydroxamic acid (SAHA), approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma, is a promising new treatment strategy for various cancers. In this study, we hypothesized that a liposomal formulation of HDACI might efficiently deliver HDACI into tumors. To incorporate HDACI efficiently into the liposomal membrane, we synthesized six HDACI-lipid conjugates, in which polyethylene glycol(2000) (PEG(2000))-lipid or cholesterol (Chol) was linked with a potent hydroxamic acid, HDACI, SAHA or K-182, by cleavable linkers, such as ester, carbamide and disulfide bonds. Liposomal HDACI-lipid conjugates were prepared with distearoylphosphatidylcholine (DSPC) and HDACI-Chol conjugate or with DSPC, Chol and HDACI-PEG-lipid conjugates, and their cytotoxicities were evaluated for human cervix tumor HeLa and mouse colon tumor Colon 26 cells. Among the liposomes, liposomal oleyl-PEG(2000)-SAHA conjugated with SAHA and oleyl-PEG(2000) via a carbamate linker showed higher cytotoxicity via hyperacetylation of histone H3 and induction of caspase 3/7 activity. These results suggested that liposomal HDACI-lipid conjugates may be a potential tool for cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/química , Lipídeos/química , Lipossomos/química , Animais , Antineoplásicos/síntese química , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Camundongos , Neoplasias , Fosfatidilcolinas/química , Polietilenoglicóis/química
2.
J Drug Target ; 21(7): 639-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23594095

RESUMO

In this study, we developed an anionic lipoplex by coating cationic lipoplex with anionic polymers such as hyaluronan (HA), chondroitin sulfate C (CS) and poly-l-glutamic acid (PLE) to deliver the plasmid DNA efficiently into the tumor by avoiding interaction with erythrocytes. The sizes of HA-, CS- and PLE-coated lipoplexes were ∼200 nm and the ζ-potentials were negative. CS- and PLE-coated lipoplexes did not induce agglutination after mixing with erythrocytes, but cationic and HA-coated lipoplexes exhibited agglutination. In terms of biodistribution and gene expression after intravenous administration, cationic and HA-coated lipoplexes largely accumulated and induced gene expression in the lung. In contrast, CS- and PLE-coated lipoplexes did not exhibit high gene expression in the lung and mainly accumulated in the liver. However, in tumor, differences in lipoplex accumulation and gene expression were not observed among the lipoplexes. In terms of toxicity after intravenous injection, CS- and PLE-coated lipoplexes did not increase tumor necrosis factor-α, aspartate aminotransferase and alanine aminotransferase concentrations in blood. From these findings, CS and PLE coatings for cationic lipoplex might produce safe systemic vectors, although they did not increase gene expression in tumor.


Assuntos
Ânions , Técnicas de Transferência de Genes , Terapia Genética , Neoplasias/terapia , Polímeros , Animais , Lipossomos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA