Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Amino Acids ; 48(3): 901-906, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26803659

RESUMO

Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.


Assuntos
Proteômica/métodos , Venenos de Aranha/química , Aranhas/química , Sequência de Aminoácidos , Animais , Espectrometria de Massas , Dados de Sequência Molecular , Venenos de Aranha/genética , Venenos de Aranha/metabolismo , Venenos de Aranha/toxicidade , Aranhas/genética , Aranhas/metabolismo
2.
Biochim Biophys Acta ; 1844(12): 2068-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239612

RESUMO

Snake venoms contain serine proteinases that are functionally similar to thrombin and specifically cleave fibrinogen to convert it into fibrin or activate platelets to aggregation. PA-BJ is a serine proteinase from Bothrops jararaca venom that promotes platelet aggregation and this effect is mediated by the G-coupled protein receptors PAR1 and PAR4. In this study we describe an improved procedure to obtain PA-BJ from B. jararaca venom that uses less chromatographic steps, and, interestingly, results in the isolation of eight proteoforms showing slightly different pIs and molecular masses due to variations in their glycosylation levels. The identity of the isolated PA-BJ forms (1-8) was confirmed by mass spectrometry, and they showed similar platelet-activating activity on washed platelet suspensions. N- and O-deglycosylation of PA-BJ 1-8 under denaturing conditions generated variable electrophoretic profiles and showed that some forms were resistant to complete deglycosylation. Furthermore, N- and O-deglycosylation under non-denaturing conditions also showed different electrophoretic profiles between the PA-BJ forms and caused partial loss of their ability to cleave a recombinant exodomain of PAR1 receptor. In parallel, three cDNAs encoding PA-BJ-like enzymes were identified by pyrosequencing of a B. jararaca venom gland library constructed with RNA from a single specimen. Taken together, our results suggest that PA-BJ occurs in the B. jararaca venom in multiple proteoforms displaying similar properties upon platelets regardless of their variable isoelectric points, molecular masses, carbohydrate moieties and susceptibility to the activity of glycosidases, and highlight that variability of specific venom components contributes to venom proteome complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA