RESUMO
Patient-derived cancer organoid culture is an important live material that reflects clinical heterogeneity. However, the limited amount of organoids available for each case as well as the considerable amount of time and cost to expand in vitro makes it impractical to perform high-throughput drug screening using organoid cultures from multiple patients. Here, we report an advanced system for the high-throughput screening of 2427 drugs using the cancer tissue-originated spheroid (CTOS) method. In this system, we apply the CTOS method in an ex vivo platform from xenograft tumors, using machines to handle CTOS and reagents, and testing a CTOS reference panel of multiple CTOS lines for the hit drugs. CTOS passages in xenograft tumors resulted in minimal changes of morphological and genomic status, and xenograft tumor generation efficiently expanded the number of CTOS to evaluate multiple drugs. Our panel of colorectal cancer CTOS lines exhibited diverse sensitivities to the hit compounds, demonstrating the usefulness of this system for investigating highly heterogeneous disease.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Esferoides Celulares/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
The proteasome degrades numerous regulatory proteins that are critical for tumor growth. Thus, proteasome inhibitors are promising antitumor agents. New proteasome inhibitors, such as tyropeptins and tyropeptin-boronic acid derivatives, have a potent inhibitory activity. Here we report the antitumor effects of two new tyropeptin-boronic acid derivatives, AS-06 and AS-29. AS-06 and AS-29 significantly suppress the degradation of the proteasome-sensitive fluorescent proteins in HEK293PS cells, and induce the accumulation of ubiquitinated proteins in human multiple myeloma cells. We show that these derivatives also suppress the degradation of the NF-κB inhibitor IκB-α and the nuclear translocation of NF-κB p65 in multiple myeloma cells, resulting in the inhibition of NF-κB activation. Furthermore, we demonstrate that AS-06 and AS-29 induce apoptosis through the caspase-8 and caspase-9 cascades. In a xenograft mouse model, i.v. administration of tyropeptin-boronic acid derivatives inhibits proteasome in tumors and clearly suppresses tumor growth in mice bearing human multiple myeloma. Our results indicate that tyropeptin-boronic acid derivatives could be lead therapeutic agents against human multiple myeloma.
Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Dipeptídeos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Mieloma Múltiplo/patologia , Neoplasias Experimentais , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in cancer, novel PI3K inhibitors such as ZSTK474, GDC-0941, NVP-BEZ235 and BKM-120 have been developed for cancer therapy. A high frequency of hotspot mutations known as E542K, E545K and H1047R in the PIK3CA gene, which encodes the catalytic subunit of PI3Kα, has been found in various types of human cancers. The hotspot PIK3CA mutations also lead to resistance to therapeutics targeting epidermal growth factor receptor (EGFR), further suggesting that inhibition of hotspot mutant PIK3CA be required for a PI3K inhibitor as anticancer drug candidate. METHODS: To investigate the activity of the novel PI3K inhibitors on the hotspot mutant PIK3CA, we determined the inhibition against the respective recombinant mutant PI3Kαs by biochemical assay. We further examined the activity at cellular background by determining the effect on phosphorylation of Akt (Ser473), and that on the growth of cancer cells. In addition, apoptosis and autophagy in cells with or without hotspot PIK3CA mutation induced by the four inhibitors were investigated. RESULTS: Our results indicated that each inhibitor exhibit comparable activity on the hotspot mutant PI3Kα to that on the wild type, which was further demonstrated by the cell-based assays. No clear correlation was shown between the PIK3CA genetic status and the sensitivity for apoptosis or autophagy induction. Interestingly, among the 4 PI3K inhibitors, BKM-120 is the weakest in PI3K inhibitory potency, but induces most potent apoptosis, suggesting that BKM-120 might have a unique mode of action. CONCLUSIONS: Our result shows that the PI3K inhibitors exhibit potent activity on both hotspot mutant and wild type PI3Kα, suggesting they might be used to treat patients with or without PIK3CA mutation when approved.
Assuntos
Antineoplásicos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Aminopiridinas/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Imidazóis/farmacologia , Indazóis/farmacologia , Morfolinas/farmacologia , Mutação , Fosforilação/efeitos dos fármacos , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Triazinas/farmacologiaRESUMO
ADP-ribosylation factor 1 (Arf1) plays a major role in mediating vesicular transport. Brefeldin A (BFA), a known inhibitor of the Arf1-guanine nucleotide exchange factor (GEF) interaction, is highly cytotoxic. Therefore, interaction of Arf1 with ArfGEF is an attractive target for cancer treatment. However, BFA and its derivatives have not progressed beyond the pre-clinical stage of drug development because of their poor bioavailability. Here, we aimed to identify novel inhibitors of the Arf1-ArfGEF interaction that display potent antitumor activity in vivo but with a chemical structure distinct from that of BFA. We exploited a panel of 39 cell lines (termed JFCR39) coupled with a drug sensitivity data base and COMPARE algorithm, resulting in the identification of a possible novel Arf1-ArfGEF inhibitor AMF-26, which differed structurally from BFA. By using a pulldown assay with GGA3-conjugated beads, we demonstrated that AMF-26 inhibited Arf1 activation. Subsequently, AMF-26 induced Golgi disruption, apoptosis, and cell growth inhibition. Computer modeling/molecular dynamics (MD) simulation suggested that AMF-26 bound to the contact surface of the Arf1-Sec7 domain where BFA bound. AMF-26 affected membrane traffic, including the cis-Golgi and trans-Golgi networks, and the endosomal systems. Furthermore, using AMF-26 and its derivatives, we demonstrated that there was a significant correlation between cell growth inhibition and Golgi disruption. In addition, orally administrated AMF-26 (83 mg/kg of body weight; 5 days) induced complete regression of human breast cancer BSY-1 xenografts in vivo, suggesting that AMF-26 is a novel anticancer drug candidate that inhibits the Golgi system, targeting Arf1 activation.
Assuntos
Fator 1 de Ribosilação do ADP/antagonistas & inibidores , Algoritmos , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Rede trans-Golgi/enzimologia , Fator 1 de Ribosilação do ADP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Bases de Dados Factuais , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , HumanosRESUMO
Dihydroorotate dehydrogenase (DHODH) is a central enzyme of the de novo pyrimidine biosynthesis pathway and is a promising drug target for the treatment of cancer and autoimmune diseases. This study presents the identification of a potent DHODH inhibitor by proteomic profiling. Cell-based screening revealed that NPD723, which is reduced to H-006 in cells, strongly induces myeloid differentiation and inhibits cell growth in HL-60 cells. H-006 also suppressed the growth of various cancer cells. Proteomic profiling of NPD723-treated cells in ChemProteoBase showed that NPD723 was clustered with DHODH inhibitors. H-006 potently inhibited human DHODH activity in vitro, whereas NPD723 was approximately 400 times less active than H-006. H-006-induced cell death was rescued by the addition of the DHODH product orotic acid. Moreover, metabolome analysis revealed that H-006 treatment promotes marked accumulation of the DHODH substrate dihydroorotic acid. These results suggest that NPD723 is reduced in cells to its active metabolite H-006, which then targets DHODH and suppresses cancer cell growth. Thus, H-006-related drugs represent a potentially powerful treatment for cancer and other diseases.
Assuntos
Di-Hidro-Orotato Desidrogenase , Proteômica , Humanos , Transformação Celular Neoplásica , Ciclo Celular , Morte CelularRESUMO
RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.
Assuntos
Proteínas Ligadas por GPI/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genes Reporter , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in de novo pyrimidine biosynthesis and is a promising cancer treatment target. This study reports the identification of indoluidin D and its derivatives as inhibitors of DHODH. Cell-based phenotypic screening revealed that indoluidin D promoted myeloid differentiation and inhibited the proliferation of acute promyelocytic leukemia HL-60 cells. Indoluidin D also suppressed cell growth in various other types of cancer cells. Cancer cell sensitivity profiling with JFCR39 and proteomic profiling with ChemProteoBase revealed that indoluidin D is a DHODH inhibitor. Indoluidin D inhibited human DHODH activity in vitro; the DHODH reaction product orotic acid rescued indoluidin D-induced cell differentiation. We synthesized several indoluidin D diastereomer derivatives and demonstrated that stereochemistry was vital to their molecular activity. The indoluidin D derivative indoluidin E showed similar activity to its parent compound and suppressed tumor growth in a murine lung cancer xenograft model. Hence, indoluidin D and its derivatives selectively inhibit DHODH and suppress cancer cell growth.
Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Animais , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Inibidores Enzimáticos/química , Humanos , Camundongos , Proteômica , Estereoisomerismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Identification of new uses for existing drugs is known to be an efficient approach in drug discovery. The identification of a novel phosphatidylinositol 3-kinase (PI3K) inhibitor is important in terms of cancer chemotherapy because PI3K is implicated in many types of cancer. In an effort to discover new PI3K inhibitory compounds, we recently carried out a screening of Screening Committee of Anticancer Drugs (SCADS) library, a compound library mainly composed of antitumor drugs and kinase inhibitors. As a result, six new PI3K inhibitory compounds were identified each of which displayed over 60% inhibition of PI3Kalpha at 10 microM. Baicalein, the most potent of these inhibitors, exhibited 73% inhibition at 1 microM. Further characterization of Baicalein and Akt inhibitor VIII showed that both compounds displayed comparable inhibition against PI3Kbeta and delta, but relatively weak activity against PI3Kgamma. Growth inhibition effects of Akt inhibitor VIII and Baicalein on human cancer cell line panel JFCR39 were also investigated, and the mean logarithm of the concentration required for 50% growth inhibition of cells (Log GI50) was determined to be -5.59 and -4.70, respectively. In addition, COMPARE analysis of the two compounds together with known PI3K inhibitors was carried out by using PI3K inhibitor ZSTK474 as a seed. Our results show that Akt inhibitor VIII displays a similar fingerprint to that of ZSTK474 (r=0.633), while Baicalein does not (r=0.126). These findings suggest the inhibition profile of Baicalein in cells is different from that of a typical PI3K inhibitor.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Subunidades Proteicas/antagonistas & inibidores , Triazinas/química , Triazinas/farmacologiaRESUMO
In order to efficiently develop improved cancer therapies it is important to predict the efficacy of anti-cancer drugs. In this regard, identification of genes that are related to drug sensitivity is vital. We previously established a panel of 39 human cancer cell lines (JFCR39) and a panel aiming for organ-specific analysis of 45 human cancer cell lines (JFCR45). Here, we focus on 20 human gastric cancer cell lines from JFCR45, a panel of human cancer cell lines to predict genes that determine chemosensitivity to anti-cancer drugs. We measured both chemosensitivity to a range of anti-cancer drugs as well as changes in gene expression profile. We then identified genes in which expression is related to chemosensitivity by using a Pearson correlation. As a result, anti-cancer drugs that have similar mechanisms of action showed similar fingerprints against a gastric subpanel of human cancer cell lines, as was the case with JFCR39 and JFCR45. Furthermore, we identified many candidate genes related to the sensitivity of gastric cancer cells to anti-cancer drugs.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Neoplasias Gástricas/patologiaRESUMO
5-aminolevulinic acid (5-ALA) has recently been employed for photodynamic diagnosis (ALA-PDD) and photodynamic therapy (ALA-PDT) of various types of cancer because hyperproliferating tumor cells do not utilize oxidative phosphorylation and do not efficiently produce heme; instead, they accumulate protoporphyrin IX (PpIX), which is a precursor of heme that is activated by violet light irradiation that results in the production of red fluorescence and singlet oxygen. The efficiencies of ALA-PDD and ALA-PDT depend on the efficient cellular uptake of 5-ALA and the inefficient excretion of PpIX. We employed the JFCR39 cell panel to determine whether tumor cells originating from different tissues can produce and accumulate PpIX. We also investigated cellular factors/molecules involved in PpIX excretion by tumor cells with the JFCR39 cell panel. Unexpectedly, the expression levels of ABCG2, which has been considered to play a major role in PpIX extracellular transport, did not show a strong correlation with PpIX excretion levels in the JFCR39 cell panel, although an ABCG2 inhibitor significantly increased intracellular PpIX accumulation in several tumor cell lines. In contrast, the expression levels of dynamin 2, which is a cell membrane-associated molecule involved in exocytosis, were correlated with the PpIX excretion levels. Moreover, inhibitors of dynamin significantly suppressed PpIX excretion and increased the intracellular levels of PpIX. This is the first report demonstrating the causal relationship between dynamin 2 expression and PpIX excretion in tumor cells.
Assuntos
Ácido Aminolevulínico/farmacologia , Dinamina II/metabolismo , Exocitose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Fotossensibilizantes/metabolismo , Protoporfirinas/metabolismo , Linhagem Celular Tumoral , Dinamina II/antagonistas & inibidores , Dinamina II/genética , Exocitose/efeitos da radiação , Heme/antagonistas & inibidores , Heme/biossíntese , Humanos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Fotoquimioterapia , Compostos de Trimetil Amônio/farmacologia , Raios UltravioletaRESUMO
Treatment of patients with advanced sarcoma remains challenging due to lack of effective medicine, with the development of novel drugs being of keen interest. A pan-PI3K inhibitor, ZSTK474, has been evaluated in clinical trials against a range of advanced solid tumors, with clinical benefit shown in sarcoma patients. In the present study, we developed a panel of 14 human sarcoma cell lines and investigated the antitumor effect of 24 anticancer agents including ZSTK474, other PI3K inhibitors, and those clinically used for sarcoma treatment. ZSTK474 exhibited a similar antiproliferative profile to other PI3K inhibitors but was clearly different from the other drugs examined. Indeed, ZSTK474 inhibited PI3K-downstream pathways, in parallel to growth inhibition, in all cell lines examined, showing proof-of-concept of PI3K inhibition. In addition, ZSTK474 induced apoptosis selectively in Ewing's sarcoma (RD-ES and A673), alveolar rhabdomyosarcoma (SJCRH30) and synovial sarcoma (SYO-1, Aska-SS and Yamato-SS) cell lines, all of which harbor chromosomal translocation and resulting oncogenic fusion genes, EWSR1-FLI1, PAX3-FOXO1 and SS18-SSX, respectively. Finally, animal experiments confirmed the antitumor activity of ZSTK474 in vivo, with superior efficacy observed in translocation-positive cells. These results suggest that ZSTK474 could be a promising drug candidate for treating sarcomas, especially those harboring chromosomal translocation.
RESUMO
To explore genes that determine the sensitivity of cancer cells to anticancer drugs, we investigated using cDNA microarrays the expression of 9216 genes in 39 human cancer cell lines pharmacologically characterized on treatment with various anticancer drugs. A bioinformatical approach was then exploited to identify genes related to anticancer drug sensitivity. An integrated database of gene expression and drug sensitivity profiles was constructed and used to identify genes with expression patterns that showed significant correlation to patterns of drug responsiveness. As a result, sets of genes were extracted for each of the 55 anticancer drugs examined. Whereas some genes commonly correlated with various classes of anticancer drugs, other genes correlated only with specific drugs with similar mechanisms of action. This latter group of genes may reflect the efficacy of each class of drugs. Therefore, the integrated database approach of gene expression and chemosensitivity profiles may be useful in the development of systems to predict drug efficacies of cancer cells by examining the expression levels of particular genes.
Assuntos
Antineoplásicos/farmacologia , Bases de Dados Genéticas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Bases de Dados Factuais , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Células Tumorais CultivadasRESUMO
We have established a panel of 45 human cancer cell lines (JFCR-45) to explore genes that determine the chemosensitivity of these cell lines to anticancer drugs. JFCR-45 comprises cancer cell lines derived from tumors of three different organs: breast, liver, and stomach. The inclusion of cell lines derived from gastric and hepatic cancers is a major point of novelty of this study. We determined the concentration of 53 anticancer drugs that could induce 50% growth inhibition (GI50) in each cell line. Cluster analysis using the GI50s indicated that JFCR-45 could allow classification of the drugs based on their modes of action, which coincides with previous findings in NCI-60 and JFCR-39. We next investigated gene expression in JFCR-45 and developed an integrated database of chemosensitivity and gene expression in this panel of cell lines. We applied a correlation analysis between gene expression profiles and chemosensitivity profiles, which revealed many candidate genes related to the sensitivity of cancer cells to anticancer drugs. To identify genes that directly determine chemosensitivity, we further tested the ability of these candidate genes to alter sensitivity to anticancer drugs after individually overexpressing each gene in human fibrosarcoma HT1080. We observed that transfection of HT1080 cells with the HSPA1A and JUN genes actually enhanced the sensitivity to mitomycin C, suggesting the direct participation of these genes in mitomycin C sensitivity. These results suggest that an integrated bioinformatical approach using chemosensitivity and gene expression profiling is useful for the identification of genes determining chemosensitivity of cancer cells.
Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Vimblastina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Análise por Conglomerados , DNA Complementar/metabolismo , Bases de Dados como Assunto , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Irinotecano , Mitomicina/farmacologia , Paclitaxel/farmacologia , Filogenia , Sensibilidade e Especificidade , Distribuição Tecidual , Transfecção , Vimblastina/farmacologia , VinorelbinaRESUMO
Here, we describe a synthetic approach for generating artificial proteins by the assemblage of naturally occurring peptide motifs. Two motifs respectively related to apoptosis induction and protein transduction were encrypted into different reading frames of an artificial gene (microgene), which was then polymerized; random frame shifts at the junctions between the microgene units yielded combinatorial polymers of three reading frames. Among the proteins created, #284 was found to penetrate through cell membranes and exert a strong apoptotic effect on several cancer cell lines. Because a simple linkage of these motifs was not sufficient to construct a bifunctional peptide, and the successful reconstitution was dependent on how they were joined together, the combinatorial strategy is important for reconstituting functions from mixtures of motifs. This microgene-based approach represents a novel system for creating proteins with desired functions.
Assuntos
Proteínas/síntese química , Proteínas/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Polímeros/farmacologiaRESUMO
We previously investigated the correlations between the expression of 9216 genes and various chemosensitivities in a panel of 39 human cancer cell lines(1)) and found that the expression levels of AKR1B1 and CTSH were correlated with sensitivity and resistance to multiple drugs, respectively. To validate these correlations, we investigated the expression of these two genes and the chemosensitivities in 12 additional gastric cancer cell lines. The expression of AKR1B1 in the additional cell lines exhibited significant correlations with sensitivities to 8 of the 23 drugs examined, while that of CTSH displayed a significant negative correlation with only one (MS-247) of the 27 drugs examined. Their expressions were weakly correlated with sensitivity and resistance, respectively, to the remainder of the drugs. Moreover, when the 12 cell lines were divided into high-expressing and low-expressing groups, a comparison of these groups using Mann-Whitney's U test revealed that high expression levels of AKR1B1 and CTSH were related to sensitivity to 21 of the drugs and resistance to 8 of the drugs, respectively. The present results suggest that AKR1B1 and CTSH may be good markers for prediction of sensitivity to certain drugs and that our panel of 39 cell lines has the potential to identify candidate predictive marker genes.
Assuntos
Oxirredutases do Álcool/efeitos dos fármacos , Catepsinas/efeitos dos fármacos , Cisteína Endopeptidases/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Idoso , Oxirredutases do Álcool/biossíntese , Oxirredutases do Álcool/genética , Aldeído Redutase , Aldo-Ceto Redutases , Antineoplásicos/farmacologia , Catepsina H , Catepsinas/biossíntese , Catepsinas/genética , Linhagem Celular Tumoral , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/genética , Feminino , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Compounds from sulfonamide-focused libraries have been evaluated in cell-based antitumor screens using the COMPARE analysis with a panel of 39 human cancer cell lines and flow cytometric cell cycle analysis. Thus far, 2 (N-[2-[(4-hydroxyphenyl)amino]-3-pyridinyl]-4-methoxybenzenesulfonamide (E7010)) and 3 (N-(3-chloro-7-indolyl)-1,4-benzenedisulfonamide (E7070)) have been selected from the collections as potent cell cycle inhibitors, which have progressed to clinical trials. Compound 2 is an orally active antimitotic agent disrupting tubulin polymerization, whereas compound 3 belongs to a novel class of antiproliferative agents causing a decrease in the S phase fraction along with G1 and/or G2 accumulation in various cancer cell lines. Because both compounds exhibited preliminary clinical activities in the phase I setting, we decided to examine further this series of oncolytic small molecules, particularly by using high-density oligonucleotide microarray analysis. The array data have enabled us to characterize these two classes of antitumor sulfonamides on the basis of gene expression changes, illuminating the essential pharmacophore structure and drug-sensitive cellular pathways for each class. Moreover, the dual character of 5 (N-(3-chloro-7-indolyl)-4-methoxybenzenesulfonamide (ER-67880)), resembling both 2 and 3, was revealed by array-based transcription profiling, though the 3-type profile of this molecule had not been apparent in the cell-based phenotypic screens. These results provide an example of the utility of structure and gene expression relationship studies in medicinal genomics.
Assuntos
Aminofenóis/síntese química , Antineoplásicos/síntese química , Sulfonamidas/síntese química , Algoritmos , Aminofenóis/química , Aminofenóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Biopolímeros , Ciclo Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Tubulina (Proteína)/química , Células Tumorais CultivadasRESUMO
As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in various diseases particularly cancer, considerable competition occurs in development of PI3K inhibitors. Consequently, novel PI3K inhibitors such as ZSTK474, GDC-0941 and NVP-BEZ235 have been developed. Even though all these inhibitors were reported to inhibit class I PI3K but not dozens of protein kinases, whether they have different molecular targets remained unknown. To investigate such molecular target specificity, we have determined the inhibitory effects of these novel inhibitors together with classical PI3K inhibitor LY294002 on PI3K superfamily (including classes I, II, and III PI3Ks, PI4K and PI3K-related kinases) by using several novel non-radioactive biochemical assays. As a result, ZSTK474 and GDC-0941 indicated highly similar inhibition profiles for PI3K superfamily, with class I PI3K specificity much higher than NVP-BEZ235 and LY294002. We further investigated their growth inhibition effects on JFCR39, a human cancer cell line panel which we established for molecular target identification, and analysed their cell growth inhibition profiles (fingerprints) by using COMPARE analysis programme. Interestingly, we found ZSTK474 exhibited a highly similar fingerprint with GDC-0941 (r=0.863), more similar than with that of either NVP-BEZ235 or LY294002, suggesting that ZSTK474 shares more in molecular targets with GDC-0941 than with either of the other two PI3K inhibitors, consistent with the biochemical assay result. The biological implication of the difference in molecular target specificity of these PI3K inhibitors is under investigation.
Assuntos
Antineoplásicos/farmacologia , Neoplasias/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Algoritmos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Imidazóis/farmacologia , Indazóis/farmacologia , Morfolinas/farmacologia , Neoplasias/tratamento farmacológico , Quinolinas/farmacologia , Especificidade por Substrato , Sulfonamidas/farmacologia , Triazinas/farmacologiaRESUMO
The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in human cancers, and several agents targeting this pathway including PI3K/Akt/mammalian target of rapamycin inhibitors have recently entered clinical trials. One question is whether the efficacy of a PI3K pathway inhibitor can be predicted based on the activation status of pathway members. In this study, we examined the mutation, expression, and phosphorylation status of PI3K and Ras pathway members in a panel of 39 pharmacologically well-characterized human cancer cell lines (JFCR39). Additionally, we evaluated the in vitro efficacy of 25 PI3K pathway inhibitors in addition to conventional anticancer drugs, combining these data to construct an integrated database of pathway activation status and drug efficacies (JFCR39-DB). In silico analysis of JFCR39-DB enabled us to evaluate correlations between the status of pathway members and the efficacy of PI3K inhibitors. For example, phospho-Akt and KRAS/BRAF mutations prominently correlated with the efficacy and the inefficacy of PI3K inhibitors, respectively, whereas PIK3CA mutation and PTEN loss did not. These correlations were confirmed in human tumor xenografts in vivo, consistent with their ability to serve as predictive biomarkers. Our findings show that JFCR39-DB is a useful tool to identify predictive biomarkers and to study the molecular pharmacology of the PI3K pathway in cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Biologia Computacional , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Animais , Biomarcadores Tumorais/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/genética , Neoplasias/metabolismo , Neoplasias/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
Four pseudo-symmetrical tamoxifen derivatives, RID-B (13), RID-C (14), RID-D (15), and bis(dimethylaminophenetole) (16), were synthesized via the novel three-component coupling reaction, and the structure-activity relationships of these pseudo-symmetrical tamoxifen derivatives were examined. It was discovered that 13 and 16 strongly inhibit the viability of the HL-60 human acute promyelocytic leukemia cell line, whereas 14 possesses a medium activity against the same cell line and 15 has no effect on the cell viability. The global anti-tumor activity of 13-16 against a variety of human cancer cells was assessed using a panel of 39 human cancer cell lines (JFCR 39), and it was shown that RID-B (13) strongly inhibited the growth of several cancer cell lines at concentrations of less than 1 microM (at 0.38 microM for SF-539 [central nervous system], at 0.58 microM for HT-29 [colon], at 0.20 microM for DMS114 [lung], at 0.21 microM for LOX-IMVI [melanoma], and at 0.23 microM for MKN74 [stomach]).
Assuntos
Antineoplásicos/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Estrutura Molecular , Tamoxifeno/síntese químicaRESUMO
We previously established a panel of human cancer cell lines, JFCR39, coupled to an anticancer drug activity database; this panel is comparable with the NCI60 panel developed by the National Cancer Institute. The JFCR39 system can be used to predict the molecular targets or evaluate the action mechanisms of the test compounds by comparing their cell growth inhibition profiles (i.e., fingerprints) with those of the standard anticancer drugs using the COMPARE program. In this study, we used this drug activity database-coupled JFCR39 system to evaluate the action mechanisms of various chemical compounds, including toxic chemicals, agricultural chemicals, drugs, and synthetic intermediates. Fingerprints of 130 chemicals were determined and stored in the database. Sixty-nine of 130 chemicals ( approximately 60%) satisfied our criteria for the further analysis and were classified by cluster analysis of the fingerprints of these chemicals and several standard anticancer drugs into the following three clusters: 1) anticancer drugs, 2) chemicals that shared similar action mechanisms (for example, ouabain and digoxin), and 3) chemicals whose action mechanisms were unknown. These results suggested that chemicals belonging to a cluster (i.e., a cluster of toxic chemicals, a cluster of anticancer drugs, etc.) shared similar action mechanism. In summary, the JFCR39 system can classify chemicals based on their fingerprints, even when their action mechanisms are unknown, and it is highly probable that the chemicals within a cluster share common action mechanisms.