Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(37): 9145-9150, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150389

RESUMO

One of the characteristics of topological materials is their nontrivial Berry phase. Experimental determination of this phase largely relies on a phase analysis of quantum oscillations. We study the angular dependence of the oscillations in a Dirac material [Formula: see text] and observe a striking spin-zero effect (i.e., vanishing oscillations accompanied with a phase inversion). This indicates that the Berry phase in [Formula: see text] remains nontrivial for arbitrary field direction, in contrast with previous reports. The Zeeman splitting is found to be proportional to the magnetic field based on the condition for the spin-zero effect in a Dirac band. Moreover, it is suggested that the Dirac band in [Formula: see text] is likely transformed into a line node other than Weyl points for the field directions at which the spin zero occurs. The results underline a largely overlooked spin factor when determining the Berry phase from quantum oscillations.

2.
Nano Lett ; 18(4): 2435-2441, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29533632

RESUMO

Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin-orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.

3.
Small ; 10(11): 2293-9, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24599538

RESUMO

As a two-dimensional material, graphene is highly susceptible to environmental influences. It is therefore challenging to deposit dielectrics on graphene without affecting its electronic properties. It is demonstrated that the effect of the dielectric deposition on graphene can be reduced by using a multilayer hexagonal boron nitride film as a buffer layer. Particularly, the boron nitride layer provides significant protection in magnetron sputtering deposition. It also enables growth of uniform and charge trapping free high-k dielectrics by atomic layer deposition. The doping effect of various deposition methods on graphene has been discussed.

4.
Adv Mater ; 29(32)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28632325

RESUMO

The direct growth of high-quality, large-area, uniform, vertically stacked Gr/h-BN heterostructures is of vital importance for applications in electronics and optoelectronics. However, the main challenge lies in the catalytically inert nature of the hexagonal boron nitride (h-BN) substrates, which usually afford a rather low decomposition rate of carbon precursors, and thus relatively low growth rate of graphene. Herein, a nickelocene-precursor-facilitated route is developed for the fast growth of Gr/h-BN vertical heterostructures on Cu foils, which shows much improved synthesis efficiency (8-10 times faster) and crystalline quality of graphene (large single-crystalline domain up to ≈20 µm). The key advantage of our synthetic route is the utilization of nickel atoms that are decomposed from nickelocene molecules as the gaseous catalyst, which can decrease the energy barrier for graphene growth and facilitate the decomposition of carbon sources, according to our density functional theory calculations. The high-quality Gr/h-BN stacks are proved to be perfect anode/protecting layers for high-performance organic light-emitting diode devices. In this regard, this work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability and high crystalline quality, thus should propel its wide applications in transparent electrodes, high-performance electronic devices, and energy harvesting/transition directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA