Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25229, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333787

RESUMO

High-altitude areas are characterized by low pressure and hypoxia, which have a significant impact on various body systems. This study aimed to investigate the alterations in cardiac index and right ventricular hypertrophy index(RVHI) in rats at different altitudes.Twenty-one male Sprague-Dawley (SD) rats aged 4 weeks were randomly divided into three groups based on altitude. The rats were raised for 28 weeks and then transferred to Qinghai University Plateau Medicine Laboratory. Body weight was measured, heart organs were isolated and weighed, and cardiac index and right ventricular hypertrophy index were determined. Statistical analysis was performed on the data from the three groups. Compared with the plain group, the body weight of the middle-altitude group was significantly decreased (P < 0.05), and cardiac index, RVHI-1, RVHI-2 increased significantly ((P < 0.05). The body weight, whole heart mass, right ventricular mass were significantly decreased in high-altitude group (P < 0.05), RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Compared with the middle-altitude group, the body weight, whole heart mass and right ventricular mass of the high-altitude group were significantly decreased (P < 0.05), and RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Increasing altitude led to a decrease in body weight, whole heart mass, and right ventricular mass in rats, indicating structural changes in the right heart. Additionally, the proportion of right heart to body weight and whole heart increased with altitude.

2.
Food Funct ; 15(2): 967-976, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38175708

RESUMO

Increasing evidence suggests that brown adipose tissue (BAT) plays an important role in obesity and related diseases. Increasing the amount or activity of BAT could prevent obesity. Therefore, a safe and effective method of activating BAT is urgently required. Here, we evaluated the potential effects of lotus leaf extract (LLE) on BAT function. We found that LLE substantially increased UCP1 mRNA and protein levels as well as thermogenic protein expression in primary brown adipocytes. Additionally, LLE treatment reduced diet-induced obesity and improved glucose homeostasis owing to BAT activation and increased energy expenditure. We found that nuciferine, an active ingredient of LLE, could dose-dependently activate BAT in vitro and in vivo, alleviate diet-induced obesity, and improve glucose homeostasis by increasing energy expenditure. Mechanistically, we found that nuciferine induced PPARG coactivator 1 alpha (PGC1-α) expression, which is a key gene involved in mitochondrial biogenesis promoter activity, by directly binding to RXRA. Furthermore, RXRA knockdown abolished expression of the nuciferine-induced mitochondrial and thermogenesis-related gene in primary brown adipocytes. In summary, we found that LLE and nuciferine have a notable effect on BAT activation and highlight the potential applications of the main component of LLE in preventing obesity and treating metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Aporfinas , Humanos , Tecido Adiposo Marrom/metabolismo , Obesidade/genética , Obesidade/prevenção & controle , Obesidade/metabolismo , Aporfinas/farmacologia , Metabolismo Energético , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA