Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767703

RESUMO

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Assuntos
Exossomos , Integrina beta1 , MicroRNAs , Telócitos , Proteínas rac1 de Ligação ao GTP , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Camundongos , Telócitos/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Proliferação de Células/genética , Movimento Celular/genética , Humanos , Remodelação Vascular/genética , Neuropeptídeos
2.
Cell Biol Toxicol ; 40(1): 25, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691184

RESUMO

Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.


Assuntos
Neoplasias Pulmonares , Metabolômica , Medicina de Precisão , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/metabolismo , Metabolômica/métodos , Medicina de Precisão/métodos , Biomarcadores Tumorais/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Lipidômica/métodos , Fenótipo , Metaboloma , Idoso , Lipídeos/sangue
3.
Lipids Health Dis ; 23(1): 223, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044297

RESUMO

BACKGROUND: Acute pancreatitis (AP) is characterized as a systemic inflammatory condition posing challenges in diagnosis and prognosis assessment. Lipid metabolism abnormalities, especially triacylglycerol (TAG) levels, have been reported, indicating their potential as biomarkers in acute pancreatitis. However, the performance of the TAG cycle, including phospholipid and glycerolipid metabolism, in AP patients has not yet been reported. METHODS: This study enrolled 91 patients with acute biliary pancreatitis (ABP), 27 with hyperlipidaemic acute pancreatitis (HLAP), and 58 healthy controls (HCs), and their plasma phospholipid and glycerolipid levels were analyzed through liquid chromatography‒mass spectrometry. The phospholipid and glycerolipid contents of plasma collected from AP patients on the first, third, and seventh days of hospitalization were also measured. An orthogonal partial least squares discriminant analysis model served to differentiate the ABP, HLAP and HC groups, and potentially diagnostic lipids were evaluated via receiver operating characteristic curves in both the test and validation sets. Correlations between clinical data and lipids were conducted using Spearman's method. Clustering via the 'mfuzz' R package and the Kruskal‒Wallis H test were conducted to monitor changes during hospitalization. RESULTS: Compared with those in HCs, the levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidic acid (PA) were lower in AP patients, whereas the levels of phosphatidylinositol (PI) and phosphatidylglycerol (PG) showed the opposite trend. Interestingly, TAG levels were positively correlated with white blood cell counts in ABP patients, and TAGs containing 44-55 carbon atoms were highly correlated with plasma TAG levels in HLAP patients. Phospholipid levels exhibited an inverse correlation with AP markers, in contrast to glycerolipids, which demonstrated a positive correlation with these markers. Additionally, PE (O-16:0/20:4) and PE (18:0/22:6) emerged as potential biomarkers because of their ability to distinguish ABP and HLAP patients from HCs, showing area under the curve (AUC) values of 0.932 and 0.962, respectively. PG (16:0/18:2), PG (16:0/20:4), PE (P-16:0/20:2), PE (P-18:2/18:2), PE (P-18:1/20:3), PE (P-18:1/20:4), PE (O-16:0/20:4), and TAG (56:6/FA18:0) were significantly changed in ABP patients who improved. For HLAP patients, PC (18:0/20:3), TAG (48:3/FA18:1), PE (P-18:0/16:0), and TAG (48:4/FA18:2) showed different trends in patients with improvement and deterioration, which might be used for prognosis. CONCLUSIONS: Phospholipids and glycerolipids were found to be potential biomarkers in acute pancreatitis, which offers new diagnostic and therapeutic insights into this disease.


Assuntos
Biomarcadores , Pancreatite , Fosfolipídeos , Humanos , Pancreatite/diagnóstico , Pancreatite/sangue , Masculino , Biomarcadores/sangue , Feminino , Pessoa de Meia-Idade , Fosfolipídeos/sangue , Adulto , Curva ROC , Triglicerídeos/sangue , Estudos de Casos e Controles , Idoso , Doença Aguda , Metabolismo dos Lipídeos , Fosfatidiletanolaminas/sangue
4.
Cell Biol Toxicol ; 39(4): 1237-1256, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877022

RESUMO

N-acetyltransferase 10 (NAT10), a nuclear acetyltransferase and a member of the GNAT family, plays critical roles in RNA stability and translation processes as well as cell proliferation. Little is known about regulatory effects of NAT10 in lung epithelial cell proliferation. We firstly investigated NTA10 mRNA expression in alveolar epithelial types I and II, basal, ciliated, club, and goblet/mucous epithelia from heathy and patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, lung adenocarcinoma, para-tumor tissue, and systemic sclerosis, respectively. We selected A549 cells for representative of alveolar epithelia or H1299 and H460 cells as airway epithelia with different genetic backgrounds and studied dynamic responses of NAT10-down-regulated epithelia to high temperature, lipopolysaccharide, cigarette smoking extract (CSE), drugs, radiation, and phosphoinositide 3-kinase (PI3K) inhibitors at various doses. We also compared transcriptomic profiles between alveolar and airway epithelia, between cells with or without NAT10 down-regulation, between early and late stages, and between challenges. The present study demonstrated that NAT10 expression increased in human lung epithelia and varied among epithelial types, challenges, and diseases. Knockdown of NAT10 altered epithelial mitochondrial functions, dynamic responses to LPS, CSE, or PI3K inhibitors, and transcriptomic phenomes. NAT10 regulates biological phenomes, and behaviors are more complex and are dependent upon multiple signal pathways. Thus, NAT10-associated signal pathways can be a new alternative for understanding the disease and developing new biomarkers and targets.


Assuntos
Células Epiteliais , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Células A549 , Acetiltransferases N-Terminal/metabolismo
5.
Exp Physiol ; 107(4): 359-373, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35193162

RESUMO

NEW FINDINGS: What is the central question of this study? What is the involvement of Mg2+ in mitigating the vasoconstriction in pulmonary arteries and smaller pulmonary arteries in the monocrotaline-induced pulmonary arterial hypertension (MCT-PAH) rat model? What are the main finding and its importance? Both store-operated Ca2+ entry- and receptor-operated Ca2+ entry-mediated vasoconstriction were enhanced in the MCT-PAH model. High magnesium inhibited vasoconstriction by directly antagonizing Ca2+ and increasing NO release, and this was more notable in smaller pulmonary arteries. ABSTRACT: Increased extracellular magnesium concentration has been shown to attenuate the endothelin-1-induced contractile response via the release of nitric oxide (NO) from the endothelium in proximal pulmonary arteries (PAs) of chronic hypoxic mice. Here, we further examined the involvement of Mg2+ in the inhibition of vasoconstriction in PAs and distal smaller pulmonary arteries (sPAs) in a monocrotaline-induced pulmonary arterial hypertension (MCT-PAH) rat model. The data showed that in control rats vasoconstriction in sPAs is more intense than that in PAs. In MCT-PAH rats, store-operated Ca2+ entry (SOCE)- and receptor-operated Ca2+ entry (ROCE)-mediated contraction were significantly strengthened. However, there was no upregulation of the vasoconstriction mediated by voltage-dependent calcium entry (VDCE). Furthermore, high magnesium greatly inhibited VDCE-mediated contraction in PAs rather than sPAs, which was the opposite of the ROCE-mediated contraction. Moreover, monocrotaline pretreatment partly eliminated the endothelium-dependent vasodilatation in PAs, which in sPAs, however, was still promoted by magnesium due to the increased NO release in pulmonary microvascular endothelial cells (PMVECs). In conclusion, the findings suggest that both SOCE- and ROCE-mediated vasoconstriction in the MCT-PAH model are enhanced, especially in sPAs. The inhibitory effect of high magnesium on vasoconstriction can be achieved partly by its direct role as a Ca2+ antagonist and partly by increasing NO release in PMVECs.


Assuntos
Hipertensão Pulmonar , Monocrotalina , Animais , Cálcio , Células Endoteliais , Hipertensão Pulmonar/induzido quimicamente , Magnésio/farmacologia , Camundongos , Monocrotalina/efeitos adversos , Artéria Pulmonar , Ratos , Ratos Sprague-Dawley , Vasoconstrição
6.
Immunol Invest ; 51(7): 1994-2008, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35797435

RESUMO

The outbreak and persistence of coronavirus disease 2019 (COVID-19) threaten human health. B cells play a vital role in fighting the infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite many studies on the immune responses in COVID-19 patients, it is still unclear how B cell receptor (BCR) constituents, including immunoglobulin heavy (IGHs) and light chains (IGLs), respond to SARS-CoV-2 in patients with varying symptoms. In this study, we conducted complementarity-determining region 3 (CDR3) sequencing of BCR IGHs and IGLs from the peripheral blood of COVID-19 patients and healthy donors. The results showed significantly reduced clonal diversity, more expanded clones, and longer CDR3 lengths of IGH and IGL in COVID-19 patients than those in healthy individuals. The IGLs had a much higher percentage of VJ skew usage (47.83% IGLV and 42.86% IGLJ were significantly regulated) than the IGHs (12.09% IGHV and 0% IGHJ) between the healthy individuals and patients, which indicated the importance of BCR light chains. Furthermore, we found a largely expanded IGLV3-25 gene cluster mostly pairing with IGLJ1 and ILGJ2 in COVID-19 patients and a newly identified upregulated IGLJ1 gene and IGLJ2+IGLV13-21 recombination, both of which are potential sources of SARS-CoV-2-targeting antibodies. Our findings on specific immune B-cell signatures associated with COVID-19 have clinical implications for vaccine and biomarker development for disease diagnosis.


Assuntos
COVID-19 , Regiões Determinantes de Complementaridade , Linfócitos B , COVID-19/genética , Regiões Determinantes de Complementaridade/genética , Humanos , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2
7.
Semin Cell Dev Biol ; 90: 174-180, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30017906

RESUMO

Long noncoding RNAs (lncRNAs) act as important regulators in cardiovascular diseases, neural degenerative disease, or cancers, by localizing and spreading across chromatins. lncRNA can regulate the 3D architecture of the enhancer cluster at the target gene locus, relevant to analogous lncRNA-protein coding gene pairs. X inactive specific transcript (Xist) plays a critical role in the process and biological function of lncRNAs. The lncRNA Jpx, Xist activator, is a nonprotein-coding RNA transcribed from a gene within the X-inactivation center and acts as a numerator element to control X-chromosome number and activate Xist transcription by interacting with CCCTC-binding factor. Up-regulated lncRNA Xist initiates X chromosome inactivation process and attracts specific chromatin modifiers. A number of chromatin-modified factors interact with lncRNAs modify 3D genome architecture and mediate Xist function in embryo development. Thus, the regulation of lncRNAs in 3D genome progresses is the key mechanism of Xist, as a therapeutic potential for Xist associated diseases.


Assuntos
Cromossomos Humanos X/genética , Regulação da Expressão Gênica/genética , Inativação do Cromossomo X/genética , Humanos , RNA Longo não Codificante/genética
8.
Adv Exp Med Biol ; 1255: 83-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32949392

RESUMO

Chronic obstructive pulmonary disease (COPD) is a lung disease affected by both genetic and environmental factors. Therefore, the role of epigenetics in the pathogenesis of COPD has attracted much attention. As one of the three epigenetic mechanisms, DNA methylation has been extensively studied in COPD. The present review aims at overviewing the effect of DNA methylation on etiology, pathogenesis, pathophysiological changes, and complications of COPD. The clarification of aberrant methylation of target genes, which play important roles in the initiation and progression of COPD, will provide new disease-specific biomarker and targets for early diagnosis and therapy.


Assuntos
Metilação de DNA , Doença Pulmonar Obstrutiva Crônica/genética , Epigênese Genética , Epigenômica , Humanos
9.
Exp Physiol ; 104(6): 932-945, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840346

RESUMO

NEW FINDINGS: What is the central question of this study? The aim was to examine and compare the contributions of caveolin-1 to the contractile responses mediated by L-type voltage-dependent calcium channels, store-operated Ca2+ channels and receptor-operated Ca2+ channels in two different types of arteries from two-kidney, one-clip hypertensive rats. What is the main finding and its importance? We demonstrated that the density of caveolae and caveolin-1 expression were significantly upregulated in the aorta of two-kidney, one-clip hypertensive rats, but not in the third-order branches of mesenteric arteries. We highlight that caveolin-1 plays an important role in aortic constriction by enhancing receptor-operated Ca2+ entry in the hypertensive rat model. ABSTRACT: Calcium and its multiple regulatory mechanisms are crucial for the development of hypertension. Among these regulatory mechanisms, store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE) mediate agonist-induced calcium influx, contributing to vascular contraction. The SOCE and ROCE are regulated by a variety of mechanisms involving caveolin-1 (Cav1), which has been found to be strongly associated with hypertension in gene polymorphism. In the present study, we investigated the role of Cav1 during the enhanced activity of calcium channels in hypertensive arteries. We demonstrated that the expression level of Cav1 was significantly increased in the aorta of two-kidney, one-clip (2K1C) hypertensive rats. The disruption of caveolae by methyl-ß-cyclodextrin did not cause a marked difference in agonist-induced vasoconstriction in the third-order branches of the mesenteric arteries but strongly suppressed the aortic contractile response to endothelin-1 in the 2K1C group, which was not found in the control group. The increase in Cav1 by introduction of Cav1 scaffolding domain enhancing peptide promoted the 1-oleoyl-2-acetyl-glycerol-induced ROCE in hypertensive aortic smooth muscle cells but did not enhance the cyclopiazonic acid-induced SOCE. In the resistance arteries, similar changes were not observed, and no statistical changes of Cav1 expression were evident in the third-order branches of the mesenteric arteries. Our results indicate that increased Cav1 expression might promote the altered [Ca2+ ]i -induced aortic vasoreactivity by enhancing ROCE and be involved in the pathogenesis of hypertension.


Assuntos
Aorta/metabolismo , Cálcio/metabolismo , Caveolina 1/metabolismo , Hipertensão/metabolismo , Animais , Masculino , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley
10.
J Transl Med ; 16(1): 262, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257694

RESUMO

The airway smooth muscle (ASM) plays an indispensable role in airway structure and function. Dysfunction in ASM plays a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and contributes to alterations of contractility, inflammatory response, immunoreaction, phenotype, quantity, and size of airways. ASM makes a key contribution in COPD by various mechanisms including altered contractility and relaxation induce by [Ca2+]i, cell proliferation and hypertrophy, production and modulation of extracellular cytokines, and release of pro-and-anti-inflammatory mediators. Multiple dysfunctions of ASM contribute to modulating airway responses to stimuli, remodeling, and fibrosis, as well as influence the compliance of lungs. The present review highlights regulatory roles of multiple factors in the development of ASM dysfunction in COPD, aims to understand the regulatory mechanism by which ASM dysfunctions are initiated, and explores the clinical significance of ASM on alterations of airway structure and function in COPD and development of novel therapeutic strategies for COPD.


Assuntos
Pulmão/fisiopatologia , Músculo Liso/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Remodelação das Vias Aéreas , Humanos , Inflamação/patologia , Fenótipo , Doença Pulmonar Obstrutiva Crônica/terapia , Canais de Potencial de Receptor Transitório/metabolismo
11.
Exp Physiol ; 103(4): 604-616, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29363240

RESUMO

NEW FINDINGS: What is the central question of this study? The central goal of this study was to elucidate the role of magnesium in the regulation of pulmonary vascular reactivity in relationship to hypoxic pulmonary hypertension. What is the main finding and its importance? We found that magnesium is essential for normal vasoreactivity of the pulmonary artery. Increasing the magnesium concentration attenuates vasoconstriction and improves vasodilatation via release of nitric oxide. Pulmonary hypertension is associated with endothelial dysfunction resulting in the suppression of magnesium modulation of vasodilatation. These results provide evidence that magnesium is important for the modulation of pulmonary vascular function. ABSTRACT: Pulmonary hypertension (PH) is characterized by enhanced vasoreactivity and sustained pulmonary vasoconstriction, arising from aberrant Ca2+ homeostasis in pulmonary arterial (PA) smooth muscle cells. In addition to Ca2+ , magnesium, the most abundant intracellular divalent cation, also plays crucial roles in many cellular processes that regulate cardiovascular function. Recent findings suggest that magnesium regulates vascular functions by altering the vascular responses to vasodilator and vasoactive agonists and affects endothelial function by modulating endothelium-dependent vasodilatation in hypertension. Administration of magnesium also decreased pulmonary arterial pressure and improved cardiac output in animal models of PH. However, the role of magnesium in the regulation of pulmonary vascular function related to PH has not been studied. In this study, we examined the effects of magnesium on endothelin-1 (ET-1)-induced vasoconstriction, ACh-induced vasodilatation and the generation of NO in PAs of normoxic mice and chronic hypoxia (CH)-treated mice. Our data showed that removal of extracellular magnesium suppressed vasoreactivity of PAs to both ET-1 and ACh. A high concentration of magnesium (4.8 mm) inhibited ET-1-induced vasoconstriction in endothelium-intact or endothelium-disrupted PAs of normoxic and CH-treated mice, and enhanced the ACh-induced production of NO in PAs of normoxic mice. Moreover, magnesium enhanced ACh-induced vasodilatation in PAs of normoxic mice, and the enhancement was completely abolished after exposure to CH. Hence, in this study we demonstrated that increasing the magnesium concentration can attenuate the ET-1-induced contractile response and improve vasodilatation via release of NO from the endothelium. We also demonstrated that chronic exposure to hypoxia can cause endothelial dysfunction resulting in suppression of the magnesium-dependent modulation of vasodilatation.


Assuntos
Endotelina-1/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Magnésio/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Óxido Nítrico/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
12.
Adv Exp Med Biol ; 1068: 187-195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29943306

RESUMO

Clinical application of stem cells (SCs) progresses significantly in the treatment of a large number of diseases, e.g. leukemia, respiratory diseases, kidney disease, cerebral palsy, autism, or autoimmune diseases. Of those, the population, biological phenotypes, and functions of individual SCs are mainly concerned, due to the lack of cell separation and purification processes. The single-cell technology, including microfluidic technology and single-cell genome amplification technology, is widely used to study SCs and gains some recognitions. The present review will address the importance of single-cell technologies in the recognition and heterogeneity of SCs and highlight the significance of current single-cell approaches in the understanding of SC phenotypes. We also discuss the values of single-cell studies to overcome the bottleneck in explore of biological mechanisms and reveal the therapeutic potentials of SCs in diseases, especially tumor-related diseases, as new diagnostic and therapeutic strategies.


Assuntos
Análise de Célula Única/métodos , Células-Tronco/química , Animais , Separação Celular , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo
13.
Sheng Li Xue Bao ; 69(1): 1-10, 2017 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-28217802

RESUMO

This study was designed to observe the differences between main pulmonary arteries and the third-order branches of pulmonary arteries in the contractile response to phenylephrine (Phen), endothelin-1 (ET-1) and potassium chloride (KCl). The vascular tension changes of main and the third-order branches of pulmonary arteries induced by KCl, ET-1 and Phen were recorded by traditional vascular tone detection methods and microvascular ring technique, respectively. The results showed that Phen could cause a significant contraction in main pulmonary arteries, but did not induce apparent contraction in the third-order branches of pulmonary arteries. Compared with main pulmonary arteries, ET-1 contracted the third-order branches of pulmonary arteries with reduced maximal response value and PD2 value. In comparison with the main pulmonary arteries, contraction caused by KCl was enhanced in the third-order branches of pulmonary arteries. The results suggest that the vascular reactivity of main and the third-order branches of pulmonary arteries is different and it is important to study the vascular function of small branches of pulmonary arteries. This study could provide an important experimental basis for the further study on vascular function of small branches of pulmonary arteries and the functional changes in pulmonary hypertension.


Assuntos
Endotelina-1/farmacologia , Fenilefrina/farmacologia , Cloreto de Potássio/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Vasoconstrição , Animais , Masculino , Ratos
14.
Sheng Li Xue Bao ; 69(6): 785-793, 2017 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-29270595

RESUMO

This study was aimed to establish an optimized method to observe the synchronous changes of vascular tension and intracellular Ca2+ signal in the third-order branches of mesenteric arteries (sMA, diameter: 100-300 µm). The vascular tension and intracellular Ca2+ signal changes in response to potassium chloride (KCl), endothelin-1 (ET-1) and Gd3+ were detected using confocal wire myograph system and confocal laser scanning microscopy imaging technique, respectively. The experimental results were analyzed to explore the optimal experimental conditions. The results showed that KCl caused contraction in sMA significantly, and the intracellular Ca2+ level of vascular smooth muscle cells (VSMCs) was also increased under 20× and 40× objective lens. Compared with those under the 40× objective lens, the Ca2+ signal change was larger and the fluorescence value was more stable under the 20× objective lens, whereas the Ca2+ signal change was not obvious under the 10× objective lens. ET-1 (1-10 nmol/L) caused concentration dependent contraction in sMA significantly, and the intracellular Ca2+ signal of VSMCs was also enhanced in a concentration dependent manner. Additionally, Gd3+ significantly reduced the contraction of sMA and the intracellular Ca2+ signal of VSMCs caused by ET-1. The results suggest that the intracellular Ca2+ signal of VSMCs changes with vascular contraction or relaxation caused by the agonists or antagonists of Ca2+ channels. We successfully recorded both changes synchronously using confocal wire myograph system and confocal laser scanning microscopy imaging technique at the same time. Based on the analysis of the experimental results, we concluded that 20× objective lens provides the best experimental condition. Compared to combination of vascular tone detection method and real-time cellular fluorescence imaging technique, the present synchronous method is convenient and helpful to reduce experimental error.


Assuntos
Sinalização do Cálcio/fisiologia , Artérias Mesentéricas/fisiologia , Animais , Endotelina-1/farmacologia , Masculino , Microscopia Confocal , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
15.
Cell Physiol Biochem ; 39(2): 438-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27383193

RESUMO

BACKGROUND/AIMS: Alterations in intracellular Ca2+ concentration ([Ca2+]i) underlie the pathogenesis of various cardiovascular diseases. Caveolin-1 (Cav-1) is the primary functional protein associated with caveolae, which are invaginations in the plasma membrane, and is a regulator of [Ca2+]i signaling. Caveolae and Cav-1 increase the activity of store-operated Ca2+ channels (SOCC) in rat pulmonary arterial smooth muscle cells (PASMCs), and these enhancing effects were more pronounced in rats with pulmonary hypertension (PH). Classical transient receptor potential (TRPC) proteins are highly expressed in vascular smooth muscle cells, and these proteins form functional receptor-operated Ca2+ channels (ROCC) and SOCC in PASMCs. Previous studies suggested that functional and structural changes in aortas might occur during the pathological process of PH. Our data demonstrated that Cav-1 and TRPC were also abundant in the aorta smooth muscle cells (AoSMCs) of PH rats. However, previous PH research primarily focused on Ca2+ channels in pulmonary arteries, but not functional changes in Ca2+ channels in aortas. The contribution of Cav-1 of AoSMCs to alterations of Ca2+ signaling in aortic functions during the pathological process of PH has not been fully characterized. Therefore, this study investigated alterations in Cav-1 expression and the relationship of these changes to Ca2+ channels in AoSMCs of PH rats. METHODS: The present study examined physiological caveolae and Cav-1 expression and characterized the function of altered Cav-1 expression in rat aortas with PH. RESULTS: The appearance of caveolae with Cav-1 expression increased significantly in the aortas of rats with PH, but TRPC1 and TRPC6 expression was not altered. In vitro experiments demonstrated that caveolae contributed to phenylephrine, endothelin-1, and 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced aortic vasoreactivity, but KCl and cyclopiazonic acid had no effect, which suggests the vital ability of Cav-1 to regulate ROCC activity. The introduction of Cav-1 scaffolding domain peptide enhanced OAG-induced ROCC function in primary AoSMCs. CONCLUSION: Cav-1 is specifically associated with ROCC in aortas and plays a vital role in altering vasoreactivity, which affects cardiovascular diseases pathology. Caveolae and Cav-1 up-regulation may affect the function of ROCC in rat models of PH.


Assuntos
Aorta/metabolismo , Cálcio/metabolismo , Caveolina 1/metabolismo , Hipertensão Pulmonar/metabolismo , Animais , Aorta/fisiologia , Aorta/ultraestrutura , Western Blotting , Cavéolas/metabolismo , Caveolina 1/genética , Células Cultivadas , Expressão Gênica , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Masculino , Microscopia Eletrônica de Transmissão , Miócitos de Músculo Liso/metabolismo , Fenilefrina/farmacologia , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
16.
Heliyon ; 10(5): e27086, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486751

RESUMO

Aims: Previous studies have demonstrated a significant upregulation of Integrin Beta 1 (ITGB1) in Telocytes. This study aims to explore the roles and underlying mechanisms of ITGB1 in inflammation and oxidative stress following Lipo-polysaccharide (LPS) administration in Telocytes. Methods: We observed an increase in reactive oxygen species (ROS) production, accompanied by a reduction in ITGB1 levels post-LPS treatment. Results: Notably, inhibiting ROS synthesis markedly reduced LPS-induced ITGB1 expression. Additionally, ectopic ITGB1 expression mitigated LPS-induced inflammation and oxidative stress, evident through decreased levels of pro-inflammatory markers such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)-1ß, IL-6, and Monocyte Chemoattractant Protein (MCP)-1. Depletion of endothelial Yes-Associated Protein 1 (YAP1) notably diminished the levels of inflammatory markers and ROS production. Furthermore, exosomes secreted by ITGB1-modified Telocytes promoted Human Umbilical Vein Endothelial Cells (HUVECs) proliferation and inhibited apoptosis. In vivo experiments revealed that exosomes from ITGB1-modified Telocytes modulated functional and structural changes, as well as inflammatory responses in Acute Lung Injury (ALI). Conclusion: These findings highlight the critical role of the YAP1/ROS axis in LPS-induced Telocyte injuries, underlining the therapeutic potential of targeting ITGB1 for mitigating inflammation and oxidative stress in these cells.

17.
Toxicol In Vitro ; 94: 105711, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37832835

RESUMO

The inhaling of cigarette smoke (CS) causes damage to airway epithelial cells, which is related to chronic obstructive pulmonary disease (COPD). It has been established that CS induces autophagy, but it is still unclear whether excessive or insufficient autophagy results in cell death. This study discovered that CS significantly elevates PSAT1 expression in bronchial epithelial cells. Further studies using autophagy inhibitor, RNA interference, RT-qPCR, western blot, and CCK-8 assay in 16-HBE cells have confirmed that autophagy is temporarily initiated by cigarette smoke extract (CSE), but insufficient autophagy leads to cell death. PSAT1 induced by CSE promotes autophagy and resists insufficient autophagy caused by CSE through Akt/mTOR pathway in human bronchial epithelial cells, playing a protective role.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Autofagia , Morte Celular , Células Epiteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética
18.
Clin Transl Med ; 14(5): e1679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706045

RESUMO

Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.


Assuntos
Lipidômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Lipidômica/métodos , Fumar/efeitos adversos , Fumar/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Feminino , Metabolômica/métodos , Pessoa de Meia-Idade
19.
Toxicol In Vitro ; 89: 105584, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36924977

RESUMO

Cigarette smoke exposure is a well-recognized causative factor for Chronic obstructive pulmonary disease (COPD), but the molecular mechanisms responsible for this effect need to be further investigated. An expanding number of studies suggest that m6A modification is involved in the progression of various diseases. Nevertheless, evidence on the regulatory function of m6A modification in human bronchial epithelial cells exposed to cigarette smoke is scarce. In this study, we investigated for the first time the effect of cigarette smoke exposure on contributing to high Mettl3 expression in HBE cells in vitro, an essential m6A writer. To investigate the pattern of m6A modification in HBE cells following cigarette smoke exposure, Mettl3 was down-regulated in HBE cells and a MeRIP-seq analysis revealed differences in m6A methylation between wild-type (WT) and Mettl3 knockdown HBE cells exposed to CSE. There were 1584 significantly hypomethylated genes engaged in multicellular organismal developments. We identified 200 differentially expressed genes with hypomethylated m6A peaks in conjunction with Mettl3 knockdown, among four candidate genes (NR1H4, TSPEAR, ACSBG1, and SLC5A5) that could be further explored in COPD. According to the research, cigarette smoke may control the behavior of human bronchial epithelial cells through m6A modification in COPD, providing a unique molecular mechanism.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Metilação , Transcriptoma , Células Epiteliais , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/farmacologia
20.
Int J Chron Obstruct Pulmon Dis ; 18: 1007-1017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275442

RESUMO

Purpose: Persistent inflammation and epithelial-mesenchymal transition are essential pathophysiological processes in chronic obstructive pulmonary disease (COPD) and involve airway remodeling. m6A methylation modification was discovered to play an important role in various diseases. Nevertheless, the regulatory role of m6A methylation has not yet been investigated in cigarette smoking-induced COPD. The study aims to explore the regulatory role of m6A methylation in cigarette smoking-induced COPD. Patients and Methods: In this study, two Gene Expression Omnibus (GEO) datasets were first utilized to analyze the expression profiles of m6A RNA methylation regulators in COPD. We then established a cell model of COPD by exposing human bronchial epithelial cells (HBECs) to cigarette smoke extract (CSE) in vitro and detected the expression of m6A writer Mettl3 and EMT phenotype markers. RNA interference, cycloleucine, RT-qPCR, western blot, MeRIP-sequencing, and cell migration assay were performed to investigate the potential effect of Mettl3 on the EMT process in CSE-induced HBECs. Results: Our results showed that Mettl3 expression was significantly elevated in cigarette smoking-induced COPD patients and in a cellular model of COPD. Furthermore, Mettl3 silence and cycloleucine treatment inhibited the EMT process of HBECs caused by CSE. Mechanically, Mettl3 silence weakens the m6A methylation of SOCS3 mRNA to enhance the protein expression of SOCS3, inhibiting CSE-induced SOCS3/STAT3/SNAI1 signaling and EMT processes in HBECs. Conclusion: Our study inferred that Mettl3-mediated m6A RNA methylation modification modulates CSE-induced EMT by targeting SOCS3 mRNA and ultimately serves as a crucial regulator in the emergence of COPD. This conclusion reinforces the regulatory role of m6A methylation in COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fumar Cigarros/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Brônquios/patologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Cicloleucina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA