Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039796

RESUMO

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Assuntos
Citocinas , Proteínas do Citoesqueleto , Dermatite Atópica , Camundongos Endogâmicos BALB C , Dinâmica Mitocondrial , Triterpenos Pentacíclicos , Triterpenos , Animais , Dinâmica Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dermatite Atópica/metabolismo , Humanos , Triterpenos/farmacologia , Camundongos , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Linfopoietina do Estroma do Timo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células HaCaT , Fosforilação/efeitos dos fármacos
2.
FASEB J ; 37(4): e22852, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906289

RESUMO

Polydatin (PD), a natural product derived from Polygonum cuspidatum, has anti-inflammatory and antioxidant effects and has significant benefits in treating allergic diseases. However, its role and mechanism in allergic rhinitis (AR) have not been fully elucidated. Herein, we investigated the effect and mechanism of PD in AR. AR model was established in mice with OVA. Human nasal epithelial cells (HNEpCs) were stimulated with IL-13. HNEpCs were also treated with an inhibitor of mitochondrial division or transfected with siRNA. The levels of IgE and cellular inflammatory factors were examined by enzyme linked immunosorbent assay and flow cytometry. The expressions of PINK1, Parkin, P62, LC3B, NLRP3 inflammasome proteins, and apoptosis proteins in nasal tissues and HNEpCs were measured by Western blot. We found that PD suppressed OVA-induced epithelial thickening and eosinophil accumulation in the nasal mucosa, reduced IL-4 production in NALF, and regulated Th1/Th2 balance. In addition, mitophagy was induced in AR mice after OVA challenge and in HNEpCs after IL-13 stimulation. Meanwhile, PD enhanced PINK1-Parkin-mediated mitophagy but decreased mitochondrial reactive oxygen species (mtROS) production, NLRP3 inflammasome activation, and apoptosis. However, PD-induced mitophagy was abrogated after PINK1 knockdown or Mdivi-1 treatment, indicating a key role of the PINK1-Parkin in PD-induced mitophagy. Moreover, mitochondrial damage, mtROS production, NLRP3 inflammasome activation, and HNEpCs apoptosis under IL-13 exposure were more severe after PINK1 knockdown or Mdivi-1 treatment. Conclusively, PD may exert protective effects on AR by promoting PINK1-Parkin-mediated mitophagy, which further suppresses apoptosis and tissue damage in AR through decreasing mtROS production and NLRP3 inflammasome activation.


Assuntos
Mitofagia , Rinite Alérgica , Camundongos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-13 , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
3.
Exp Mol Pathol ; 136: 104889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316203

RESUMO

Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.


Assuntos
Prurido , Pele , Humanos , Prurido/genética , Prurido/metabolismo , Queratinócitos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
4.
BMC Pulm Med ; 23(1): 50, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36726128

RESUMO

BACKGROUND: Asthma is characterized by chronic inflammation and airway remodeling. However, limited study is conducted on the gene expression profiles of ovalbumin (OVA) induced asthma in mice. Here, we explored the gene expression profiles in lung tissues from mice with OVA-induced asthma using microarray and bioinformatics analysis. METHODS: For establishment of OVA-induced asthma model, mice first received intraperitoneal sensitization with OVA on day 0, 7 and 14, followed by atomizing inhalation of OVA 3 times a week for 8 weeks. The lung tissues were collected and subjected to microarray analysis, bioinformatics analysis and expression validation. RESULTS: Microarray data of lung tissues suggested that 3754 lncRNAs and 2976 mRNAs were differentially expressed in lung tissues between control and asthmatic mice, including 1647 up-regulated and 2106 down-regulated lncRNAs, and 1201 up-regulated and 1766 down-regulated mRNAs. GO analysis displayed that the up-regulated genes were enriched in inflammatory response, leukocyte migration involved in inflammatory response, and Notch signaling pathway. KEGG pathway analysis indicated that the enriched pathway terms of the up-regulated gene included Toll-like receptor signaling pathway and Th17 cell differentiation signaling pathway. Additionally, based on the previously published literatures on asthma and inflammation, we screened out down-regulated genes, such as Smg7, Sumo2, and Stat5a, and up-regulated genes, such as Myl9, Fos and Tlr4. According to the mRNA-lncRNA co-expression network, we selected lncRNAs associated with above genes, including the down-regulated lncRNAs of NONMMUT032848, NONMMUT008873, NONMMUT009478, and NONMMUT006807, and the up-regulated lncRNAs of NONMMUT052633, NONMMUT05340 and NONMMUT042325. The expression changes of the above genes were validated in lung tissues by real-time quantitaive PCR and Western blot. CONCLUSIONS: Overall, we performed gene microarray on lung samples from OVA-induced asthmatic mice and summarized core mRNAs and their related lncRNAs. This study may provide evidence for further research on the therapeutic targets of asthma.


Assuntos
Asma , RNA Longo não Codificante , Camundongos , Animais , Ovalbumina/efeitos adversos , Transcriptoma , RNA Longo não Codificante/metabolismo , Asma/induzido quimicamente , Asma/genética , Asma/tratamento farmacológico , Pulmão/metabolismo , Inflamação , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
5.
Int Arch Allergy Immunol ; 183(3): 326-336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34634782

RESUMO

INTRODUCTION: This study aimed to explore the effects and mechanisms of salidroside (SAL) in airway inflammation in asthmatic mice. METHODS: Mice were sensitized with ovalbumin (OVA) to establish an asthma model. They were divided into the control group, OVA group, SAL low-dose group (SAL-L), SAL high-dose group (SAL-H), and dexamethasone (DXM) group. The airway reactivity of the mice was measured, and the total cells, neutrophils, eosinophils, and lymphocytes were counted, respectively. The levels of IL-4, IL-5, IL-13, and IFN-γ in bronchoalveolar lavage fluid (BALF) were detected by ELISA. Immunohistochemistry was used to detect the expression levels of p-AMPK, p-Akt, and p-GSK3ß. Western blot was used to detect cytokine levels in lung tissue and p-AMPK, p-Akt, and p-GSK3ß levels in LPS-induced 16HBE cells. RESULTS: The airway hyperresponsiveness of asthmatic mice in the SAL-H group decreased (p < 0.05), and the total number of cells, neutrophils, eosinophils, and lymphocytes decreased significantly (p < 0.05). In addition, the airways of mice showed airway inflammatory infiltration and goblet cell proliferation, and the corresponding cellular inflammatory factors IL-4, IL-5, and IL-13 were significantly decreased. However, the expression of IFN-γ in BALF and lung tissues was increased (p < 0.05). Moreover, after the mice were treated with SAL, the phosphorylation level of AMPK was significantly increased, which further reduced the phosphorylation levels of Akt and GSK3ß (p < 0.05). Both SAL and AMPK inhibitors exerted effects on LPS-induced 16HBE cells, consistent with in vivo results. CONCLUSION: SAL can inhibit bronchial hyperresponsiveness and reduce tracheal inflammation by increasing AMPK phosphorylation and inhibiting Akt and GSK3ß signaling pathways.


Assuntos
Asma , Interleucina-13 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Glucosídeos , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-5 , Lipopolissacarídeos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Fenóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
J Cell Mol Med ; 24(23): 13739-13750, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124760

RESUMO

This study is to investigate the inhibitory effects and mechanisms of DEK-targeting aptamer (DTA-64) on epithelial mesenchymaltransition (EMT)-mediated airway remodelling in mice and human bronchial epithelial cell line BEAS-2B. In the ovalbumin (OVA)-induced asthmatic mice, DTA-64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA-64 reduced collagen deposition, transforming growth factor 1 (TGF-ß1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α-SMA), as well as weekend matrix metalloproteinases (MMP-2 and MMP-9) and NF-κB p65 activity. In the in vitro experiments, we used TGF-ß1 to induce EMT in the human epithelial cell line BEAS-2B. DEK overexpression (ovDEK) or silencing (shDEK) up-regulated or down-regulated TGF-ß1 expression, respectively, on the contrary, TGF-ß1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF-ß1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF-ß1-mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA-64 against EMT of asthmatic mice and BEAS-2B might partially be achieved through suppressing TGF-ß1/Smad, MAPK and PI3K signalling pathways. DTA-64 may be a new therapeutic option for the management of airway remodelling in asthma patients.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Asma/etiologia , Asma/metabolismo , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Asma/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Inativação Gênica , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Imunomodulação/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ovalbumina/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Smad/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
Biosci Biotechnol Biochem ; 84(2): 268-278, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31690224

RESUMO

This study is to determine the role and mechanism of cryptotanshinone (CTS) in allergic airway inflammation. Asthma induced by OVA was established in BALB/c mice. We found increased airway hyperresponsiveness (AHR), increased inflammatory cell infiltration, elevated levels of TNF-α, interleukin-1ß (IL-1ß), IL-4, IL-5, IL-6 and IL-13, decreased interferon gamma (IFN-γ) in lung tissue, increased content of total immunoglobulin E (IgE), OVA specific IgE, Eotaxin, ICAM-1, VCAM-1, nuclear factor-kappaB (NF-κB) and phosphorylation of p38 MAPK in lung tissue. However, the administration of CTS significantly decreased AHR in asthmatic mice, reduced inflammation around the bronchioles and inflammatory cells around airway, regulated cytokine production, reduced the total IgE and OVA-specific IgE levels, and inhibited NF-κB activation and p38 MAPK phosphorylation. In vitro experiments in 16 HBE cells revealed that CTS attenuated CAM-1 and IL-6 expression. These results indicate that CTS alleviates allergic airway inflammation by modulating p38 MAPK phosphorylation and NF-κB activation.


Assuntos
Asma/patologia , Hipersensibilidade/patologia , Inflamação/patologia , NF-kappa B/metabolismo , Fenantrenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Asma/metabolismo , Hiper-Reatividade Brônquica , Líquido da Lavagem Broncoalveolar/citologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/metabolismo , Medicamentos de Ervas Chinesas , Feminino , Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Fosforilação
8.
Biosci Biotechnol Biochem ; 84(5): 898-910, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31900049

RESUMO

In this study, we investigated the role and mechanism of imperatorin (IMP) in chronic inflammation and airway remodeling. The levels of TNF-α, IL-1ß, IL-6, IL-8, VEGF, α-SMA, and ROS were detected by ELISA, immunohistochemistry (IHC), immunofluorescence, and Western blot. In addition, we evaluated the effect of IMP on MAPK, PI3K/Akt, NF-κB, and Nrf2/HO-1 signaling pathways. IMP treatment obviously attenuated the production of inflammatory cytokines and inflammatory cells in bronchoalveolar lavage fluid of OVA-induced airway remodeling model. Meanwhile, it significantly inhibited inflammatory cell infiltration, goblet cell hyperplasia, collagen deposition, VEGF production, α-SMA, and ROS expression. Our study has shown that IMP could regulate the signaling pathways including MAPK, PI3K/Akt, NF-κB, and Nrf2/HO-1 to release the inflammatory responses. IMP might attenuate airway remodeling by the down-regulation of Nrf2/HO-1/ROS/PI3K/Akt, Nrf2/HO-1/ROS/MAPK, and Nrf2/HO-1/ROS/NF-κB signaling pathways.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/metabolismo , Furocumarinas/farmacologia , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Furocumarinas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Miócitos de Músculo Liso/metabolismo , Ovalbumina/farmacologia
9.
Scand J Immunol ; 89(1): e12720, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30589094

RESUMO

Pyrin domain (PYD), a subclass of protein motif known as the death fold, is frequently involved in inflammation and immune responses. PYD modulates nuclear factor-kappa B (NF-κB) signalling pathway upon various stimuli. Herein, a novel recombinant pyrin domain protein (RPYD) was generated. Its role and mechanism in inflammatory response in an ovalbumin (OVA) induced asthma model was investigated. After OVA challenge, there was inflammatory cell infiltration in the lung, as well as airway hyper-responsiveness (AHR) to inhaled methacholine. In addition, eosinophils increased in the bronchoalveolar lavage fluids, alone with the elevated levels of Th-2 type cytokines [interleukin (IL)-4, IL-5 and IL-13], eotaxin, and adhesion molecules. However, the transnasal administration of RPYD before the OVA challenge significantly inhibited these asthmatic reactions. Moreover, RPYD markedly suppressed NF-κB translocation, reduced phosphorylation of p38 MAPK, and thus attenuated the expression of intercellular adhesion molecule 1 and IL-6 in the BEAS-2B cells stimulated by proinflammatory cytokines in vitro. These findings indicate that RPYD can protect asthma host from OVA-induced airway inflammation and AHR via down-regulation of NF-κB and p38 MAPK activities. RPYD may be used as a potential medicine for the treatment of asthma in clinic.


Assuntos
Asma/imunologia , Hipersensibilidade/imunologia , Inflamação/imunologia , NF-kappa B/imunologia , Domínio Pirina/imunologia , Animais , Asma/metabolismo , Feminino , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
10.
Biosci Biotechnol Biochem ; 83(4): 622-632, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30585119

RESUMO

To noninvasively monitor the effect of gene therapy and achieve an optimal therapeutic effect, liposomes encapsulated polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles (SPION) with dual functions of MRI diagnosis and gene therapy were prepared. SPION was synthesized via co-precipitation, and then modified with PEI via thiourea reaction. The liposomes encapsulating PEI-SPION (LP-PEI-SPION) were prepared by ethanol injection. Fourier transform infrared spectra confirmed that PEI was successfully modified onto SPION, and thermogravimetric analysis indicated that the PEI content was about 17.1%. The LP-PEI-SPION/DNA had a small particle size of 253.07 ± 0.90 nm. LP-PEI-SPION/DNA had low cytotoxicity with more than 80% of the cell survival rates and high transfection efficiency compared with Lipofectamine® 2000/DNA. Additionally, it also showed good MRI effect on three cell lines. The liposomes encapsulating PEI-SPION (lipopolyplexes) have been successfully prepared as MRI contrast agents and gene delivery vectors, which may have great theoretical research significance and clinical potentials. Abbreviations: PEI, polyethylenimine; SPION, superparamagnetic iron oxide nanoparticles; LP-PEI-SPION, liposomes encapsulating PEI-SPION; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; ICP-MS, inductively coupled plasma mass spectrometry; XRD, X-ray diffraction; TEM, transmission electron microscope; TGA, thermogravimetric analysis; DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; Chol, cholesterol.


Assuntos
Meios de Contraste/síntese química , Composição de Medicamentos/métodos , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Polietilenoimina/química , Células A549 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/farmacologia , Compostos Férricos/química , Genes Reporter , Células Hep G2 , Humanos , Lipossomos/farmacologia , Luciferases/genética , Luciferases/metabolismo , Termogravimetria , Tioureia/química , Transfecção/métodos
11.
Med Sci Monit ; 24: 7186-7198, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30296789

RESUMO

BACKGROUND This study investigated the role and mechanism of alprostadil in acute respiratory distress syndrome (ARDS) induced by oleic acid (OA) in rats. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into control, OA model, and OA + Alprostadil (2.5, 5, and 10 µg/kg, respectively) groups. The ARDS model was induced by femoral vein injection of OA, and alprostadil was administrated immediately. Lung injury was evaluated by lung wet-dry weight ratio (W/D) and histological analyses. Expressions of ACE, inflammatory mediators, apoptotic-related proteins, and proteins in the MAPKs and NF-κB signaling pathways were determined by Western blot or immunohistochemical staining. RESULTS Compared with the control group, the OA model group had significantly increased W/D, lung injury score, and collagen deposition at 3 h after OA injection. However, alprostadil (10 µg/kg) treatment significantly reduced OA-induced elevation of these indicators. Additionally, OA-induced expression of TNF-α and IL-1ß were suppressed by alprostadil. The OA-induced activation of nuclear factor (NF) κB p65 was also reduced by alprostadil. Furthermore, we found that Alprostadil had an inhibitory effect on the phosphorylation of JNK, ERK1/2, and p38 MAPKs. Alprostadil inhibited Bax but increased Bcl-2, indicating a suppressive role in apoptosis. Remarkably increased expression of ACE in the OA model group was observed, which was decreased by alprostadil. CONCLUSIONS Alprostadil has a protective effect on ARDS induced by OA in rats, possibly through inhibiting apoptosis, suppressing the activation of MAPKs and NF-κB signaling pathways, and decreasing ACE protein expression. Therefore, the use of alprostadil in clinical ARDS treatment is promising.


Assuntos
Alprostadil/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ácido Oleico/toxicidade , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 473(2): 408-14, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26972254

RESUMO

AIMS: The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. METHODS: To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whether cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. RESULTS: Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. CONCLUSIONS: The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.


Assuntos
Anafilaxia/tratamento farmacológico , Antialérgicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , NF-kappa B/imunologia , Piranos/uso terapêutico , Anafilaxia/imunologia , Anafilaxia/patologia , Animais , Antialérgicos/farmacologia , Células Cultivadas , Citocinas/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Liberação de Histamina/efeitos dos fármacos , Mediadores da Inflamação/imunologia , Masculino , Mastócitos/imunologia , Mastócitos/patologia , Camundongos , Piranos/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
BMC Cancer ; 15: 244, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25885439

RESUMO

NAD(P)H: quinone oxidoreductase (NQO1) is a flavoprotein that catalyzes two-electron reduction and detoxification of quinones and its derivatives. NQO1 catalyzes reactions that have a protective effect against redox cycling, oxidative stress and neoplasia. High expression of NQO1 is associated with many solid tumors including those affecting the colon, breast and pancreas; however, its role in the progression of ovarian carcinoma is largely undefined. This study aimed to investigate the clinicopathological significance of high NQO1 expression in serous ovarian carcinoma. METHODS: NQO1 protein expression was assessed using immunohistochemical (IHC) staining in 160 patients with serous ovarian carcinoma, 62 patients with ovarian borderline tumors and 53 patients with benign ovarian tumors. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect NQO1 mRNA expression levels. The correlation between high NQO1 expression and clinicopathological features of ovarian carcinoma was evaluated by Chi-square and Fisher's exact test. Overall survival (OS) rates of all of ovarian carcinoma patients were calculated using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox proportional hazards regression model. RESULTS: NQO1 protein expression in ovarian carcinoma cells was predominantly cytoplasmic. Strong, positive expression of NQO1 protein was observed in 63.8% (102/160) of ovarian carcinomas, which was significantly higher than in borderline serous tumors (32.3%, 20/62) or benign serous tumors (11.3%, 6/53). Importantly, the rate of strong, positive NQO1 expression in borderline serous tumors was also higher than in benign serous tumors. High expression of NQO1 protein was closely associated with higher histological grade, advanced clinical stage and lower OS rates in ovarian carcinomas. Moreover, multivariate analysis indicated that NQO1 was a significant independent prognostic factor, in addition to clinical stage, in patients with ovarian carcinoma. CONCLUSIONS: NQO1 is frequently upregulated in ovarian carcinoma. High expressin of NQO1 protein may be an effective biomarker for poor prognostic evaluation of patients with serous ovarian carcinomas.


Assuntos
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidade , Expressão Gênica , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Adulto , Idoso , Biomarcadores , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/terapia , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Prognóstico
14.
BMC Cancer ; 15: 207, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25880877

RESUMO

BACKGROUND: High-level expression of NAD(P)H: quinoneoxidoreductase 1 (NQO1) has been correlated with many types of human cancers, suggesting that NQO1 plays important roles in tumor occurrence and progression. This study attempted to explore the role of NQO1 in tumor progression and prognostic evaluation of non-small cell lung cancer (NSCLC). METHODS: Total 164 tissue samples, including 150 NSCLC paired with the adjacent non-tumor tissues and 14 normal lung tissues, were picked-up for immunohistochemical (IHC) staining of the NQO1 protein, and immunofluorescence (IF) staining was also performed to detect the subcellular localization of the NQO1 protein in A549 human lung cancer cells. The correlation between NQO1 expression and clinicopathological characteristics were evaluated by Chi-square test and Fisher's exact tests. The disease-free survival (DFS) and overall survival (OS) rates of NSCLC patients were calculated by the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox proportional hazards regression model. RESULTS: The NQO1 protein showed a mainly cytoplasmic staining pattern in lung cancer cells, including adenocarcinoma and squamous cell carcinoma (SCC). Both positive rate and strongly positive rate of NQO1 protein expression were significantly higher in NSCLC (59.3% and 28.0%) than that in adjacent non tumor (8.0% and 1.3%) and normal lung tissues (0%). The positive rate of NQO1 was related with clinical stage and lymph node metastasis, and the strongly positive rate of NQO1 protein was significantly correlated with tumor size, poor differentiation, advanced clinical stage and lymph node metastasis in NSCLC. Additionally, survival analyses showed that the patients with NQO1 positive expression had lower OS rates compared with those with NQO1 negative expression in the groups of T1-2, T3-4, without LN metastasis and stage I-II of NSCLC, respectively; however, in the groups of patients with LN metastasis or III-IV stages, OS rate was not correlated with NQO1 expression status. Moreover, multivariate analysis suggested that NQO1 emerged as a significant independent prognostic factor along with tumor size, differentiation, lymph node metastasis and clinical stage in patients with NSCLC. CONCLUSIONS: NQO1 is upregulated in NSCLC, and it may be a useful poor prognostic biomarker and a potential therapeutic target for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , NAD(P)H Desidrogenase (Quinona)/biossíntese , Prognóstico , Adulto , Carcinoma Pulmonar de Células não Pequenas/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , NAD(P)H Desidrogenase (Quinona)/genética , Estadiamento de Neoplasias
15.
BMC Cancer ; 14: 414, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24912939

RESUMO

BACKGROUND: NQO1 (NAD(P)H: quinone oxidoreductase-1), located on chromosome 16q22, functions primarily to protect normal cells from oxidant stress and electrophilic attack. Recent studies have revealed that NQO1 is expressed at a high level in most human solid tumors including those of the colon, breast, pancreas, ovaries and thyroid, and it has also been detected following the induction of cell cycle progression and proliferation of melanoma cells. In this study, we aimed to investigate the clinicopathological significance of upregulated NQO1 protein expression in squamous cell carcinomas (SCCs) of the uterine cervix. METHODS: The localization of the NQO1 protein was determined in the SiHa cervical squamous cancer cell line using immunofluorescence (IF) staining, and immunohistochemical (IHC) staining performed on paraffin-embedded cervical SCC specimens from 177 patients. For comparison, 94 cervical intraepithelial neoplasia (CIN) and 25 normal cervical epithelia samples were also included. QRT-PCR was performed on RNA from fresh tissues to detect NQO1 mRNA expression levels, and HPV infection status was genotyped using oligonucleotide microarray. Disease-free survival (DFS) and 5-year overall survival (OS) rates for all cervical SCC patients were calculated using the Kaplan-Meier method, and univariate and multivariate analysis was performed using the Cox proportional hazards regression model. RESULTS: The NQO1 protein showed a mainly cytoplasmic staining pattern in cervical cancer cells, and only three cases of cervical SCC showed a nuclear staining pattern. The strongly positive rate of NQO1 protein expression was significantly higher in cervical SCCs and CINs than in normal cervical epithelia. High-level NQO1 expression was closely associated with poor differentiation, late-stage, lymph node metastasis and high-risk for HPV infection. Additionally, high-level NQO1 expression was associated with lower DFS and 5-year OS rates, particularly for patients with early-stage cervical SCCs. Furthermore, Cox analysis revealed that NQO1 expression emerged as a significant independent hazard factor for DFS rate in patients with cervical SCC. CONCLUSIONS: NQO1 overexpression might be an independent biomarker for prognostic evaluation of cervical SCCs.


Assuntos
Carcinoma de Células Escamosas/genética , NAD(P)H Desidrogenase (Quinona)/biossíntese , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Pessoa de Meia-Idade , NAD(P)H Desidrogenase (Quinona)/genética , Papillomaviridae/patogenicidade , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
16.
Int Immunopharmacol ; 130: 111703, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38422767

RESUMO

Bronchial asthma is known for airway inflammation, hyperresponsiveness, and remodeling.MicroRNAs (MiRNAs) have been involved in the development of asthma, whereas, the mechanism of various MiRNAs in asthma remains to be elucidated. In this study, we aim to explore the mechanism of miR-128-3p in asthma-related airway inflammation by targeting sine oculis homeobox homolog 1 (SIX1) to regulate the mitochondrial function. In an ovalbumin (OVA) asthma mouse model, miR-128-3p levels were found to be significantly diminished. Administration of miR-128-3p agomir decreased peribronchial inflammatory cell infiltration and improved airway inflammation. Afterwards, we used the luciferase reporter assay to predict and confirmed that SIX1 is a target gene of miR-128-3p. Overexpression of miR-128-3p attenuated IL-13-induced cellular inflammation and ROS production in bronchial epithelial cells (BEAS-2B). In vitro, overexpression of miR-128-3p and SIX1 knockdown mitigated mitochondrial fragmentation, reduced Drp1-mediated mitochondrial division, and upregulated mitochondrial membrane potential. Moreover, led to decreased production of ROS/mitochondrial ROS, P-Drp1(616) and Fis1 expression, while enhancing P-Drp1(637), MFN1, caspase-3/9, and Bax-mediated apoptosis. Our findings demonstrated that miR-128-3p could alleviate airway inflammation by downregulating SIX1 and improving mitochondrial function, positioning the miR-128-3p/SIX1/Drp1 signaling as a potential therapeutic target for asthma.


Assuntos
Asma , Proteínas de Homeodomínio , MicroRNAs , Animais , Camundongos , Asma/genética , Asma/terapia , Asma/metabolismo , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dinâmica Mitocondrial/genética , Espécies Reativas de Oxigênio , Proteínas de Homeodomínio/metabolismo
17.
Dev Cell ; 59(4): 517-528.e3, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272028

RESUMO

Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation and glutathione (GSH) depletion. Despite recent advances, challenges remain in understanding the bidirectional interactions or interplay between organelles during ferroptosis. In this study, we aimed to understand the interplay between mitochondria (Mito) and lysosomes (Lyso) in cell homeostasis and ferroptosis. For this purpose, we designed a single fluorescent probe that marks GSH in Mito and hypochlorous acid (HOCl) in Lyso with two distinct emissions. Using this dual-targeted single fluorescent probe (9-morphorino pyronine), we detected Mito-Lyso interplay in ferroptosis. We disclosed differences in Mito-Lyso interplay depending on the induction of ferroptosis. Although erastin treatment decreased GSH, RSL3 triggered a HOCl burst, and FIN56- and FINO2-induced ferroptosis increased GSH and HOCl. Additionally, we showed that only extracellular vesicles generated during erastin-induced ferroptosis could spontaneously move and dock to neighboring cells, resulting in accelerated cell death.


Assuntos
Vesículas Extracelulares , Ferroptose , Corantes Fluorescentes/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Vesículas Extracelulares/metabolismo
18.
Redox Biol ; 71: 103090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373380

RESUMO

During asthma, there is an intensification of pulmonary epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. However, the underlying mechanism remains largely unknown. Therefore, this study investigated the roles of ULK1, Atg9a, and Rab9 in epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. We found that ULK1 gene knockout reduced the infiltration of inflammatory cells, restored the imbalance of the Th1/Th2 ratio, and inhibited the formation of inflammatory bodies in the lung tissue of house dust mite-induced asthma mice. Moreover, we demonstrated that Atg9a interacted with ULK1 at S467. ULK1 phosphorylated Atg9a at S14. Treatment with ULK1 activator (LYN-1604) and ULK1 inhibitor (ULK-101) respectively promoted and inhibited inflammasome activation, indicating that the activation of inflammasome induced by house dust mite in asthma mice is dependent on ULK1. For validation of the in vivo results, we then used a lentivirus containing ULK1 wild type and ULK1-S467A genes to infect Beas-2b-ULK1-knockout cells and establish a stable cell line. The results suggest that the ULK1 S467 site is crucial for IL-4-induced inflammation and oxidative stress. Experimental verification confirmed that Atg9a was the superior signaling pathway of Rab9. Interestingly, we found for the first time that Rab9 played a very important role in inflammation-induced fragmentation of the Golgi apparatus. Inhibiting the activation of the ULK1/Atg9a/Rab9 signaling pathways can inhibit Golgi apparatus fragmentation and mitochondrial oxidative stress in asthma while reducing the production of NLRP3-mediated pulmonary epithelial inflammation.


Assuntos
Asma , Pneumonia , Animais , Camundongos , Asma/genética , Asma/metabolismo , Autofagia , Complexo de Golgi/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Pneumonia/metabolismo
19.
Exp Ther Med ; 25(6): 255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37153887

RESUMO

Itching is associated with various skin diseases, including atopic dermatitis and allergic dermatitis, and leads to repeated scratching behavior and unpleasant sensation. Although clinical and laboratory research data have shown that estrogen is involved in regulating itch, the molecular and cellular basis of estrogen in itch sensation remains elusive. In the present study, it was found that estrogen-treated mice exhibited reduced scratching bouts when challenged with histamine, chloroquine, the proteinase-activated receptor-2 activating peptide SLIGRL-NH2 (SLIGRL), compound 48/80, and 5-hydroxytryptamine when compared with mice in the placebo group. Moreover, estrogen also suppressed scratching bouts in the mouse model of chronic itch induced by acetone-ether-water treatment. Notably, consistent with the behavioral tests, the present RNA-seq analysis showed that estrogen treatment caused significantly reduced expression levels of itch-related molecules such as Mas-related G-protein coupled receptor member A3, neuromedin B and natriuretic polypeptide b. In addition, estradiol attenuated histamine-induced and chloroquine-induced calcium influx in dorsal root ganglion neurons. Collectively, the data of the present study suggested that estrogen modulates the expression of itch-related molecules and suppresses both acute and chronic itch in mice.

20.
Biomol Ther (Seoul) ; 31(4): 434-445, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37019836

RESUMO

We investigated whether FTY-720 might have an effect on bleomycin-induced pulmonary fibrosis through inhibiting TGF-ß1 pathway, and up-regulating autophagy. The pulmonary fibrosis was induced by bleomycin. FTY-720 (1 mg/kg) drug was intraperitoneally injected into mice. Histological changes and inflammatory factors were observed, and EMT and autophagy protein markers were studied by immunohistochemistry and immunofluorescence. The effects of bleomycin on MLE-12 cells were detected by MTT assay and flow cytometry, and the related molecular mechanisms were studied by Western Blot. FTY-720 considerably attenuated bleomycin-induced disorganization of alveolar tissue, extracellular collagen deposition, and α-SMA and E-cadherin levels in mice. The levels of IL-1ß, TNF-α, and IL-6 cytokines were attenuated in bronchoalveolar lavage fluid, as well as protein content and leukocyte count. COL1A1 and MMP9 protein expressions in lung tissue were significantly reduced. Additionally, FTY-720 treatment effectively inhibited the expressions of key proteins in TGF-ß1/TAK1/P38MAPK pathway and regulated autophagy proteins. Similar results were additionally found in cellular assays with mouse alveolar epithelial cells. Our study provides proof for a new mechanism for FTY-720 to suppress pulmonary fibrosis. FTY-720 is also a target for treating pulmonary fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA