RESUMO
Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.
Assuntos
Técnicas Biossensoriais , Nanofibras , Técnicas Biossensoriais/métodos , Seda , Semicondutores , BactériasRESUMO
In the heterostructure of two-dimensional (2D) materials, many novel physics phenomena are strongly dependent on the Moiré superlattice. How to achieve the continuous manipulation of the Moiré superlattice in the same sample is very important to study the evolution of various physical properties. Here, in minimally twisted monolayer-multilayer graphene, we found that bubble-induced strain has a huge impact on the Moiré superlattice. By employing the AFM tip to dynamically and continuously move the nanobubble, we realized the modulation of the Moiré superlattice, like the evolution of regular triangular domains into long strip domain structures with single or double domain walls. We also achieved controllable modulation of the Moiré superlattice by moving multiple nanobubbles and establishing the coupling of nanobubbles. Our work presents a flexible method for continuous and controllable manipulation of Moiré superlattices, which will be widely used to study novel physical properties in 2D heterostructures.
RESUMO
The early development of zebrafish (Danio rerio) is a complex and dynamic physiological process involving cell division, differentiation, and movement. Currently, the genome and transcriptome techniques have been widely used to study the embryonic development of zebrafish. However, the research of proteomics based on proteins that directly execute functions is relatively vacant. In this work, we apply label-free quantitative proteomics to explore protein profiling during zebrafish's embryogenesis, and a total of 5961 proteins were identified at 10 stages of zebrafish's early development. The identified proteins were divided into 11 modules according to weighted gene coexpression network analysis (WGCNA), and the characteristics between modules were significantly different. For example, mitochondria-related functions enriched the early development of zebrafish. Primordial germ cell-related proteins were identified at the 4-cell stage, while the eye development event is dominated at 5 days post fertilization (dpf). By combining with published transcriptomics data, we discovered some proteins that may be involved in activating zygotic genes. Meanwhile, 137 novel proteins were identified. This study comprehensively analyzed the dynamic processes in the embryonic development of zebrafish from the perspective of proteomics. It provided solid data support for further understanding of the molecular mechanism of its development.
RESUMO
Short open reading frame-encoded peptides (SEPs) are microproteins with less than 100 amino acids that play an essential role in the growth and development of organisms. There are plenty of short open reading frames in Drosophila melanogaster that potentially code polypeptides. We chose 11 time points during the life cycle of Drosophila to investigate microproteins, particularly those related to development. Finally, we identified a total of 410 microproteins, of which 27 were noncoding RNA-encoded proteins. Of the 410 microproteins, 74 were expressed in all stages from embryo to adults, whereas 300 microproteins were only found in one or two time points. Approximately, one-third of the microproteins were not reported previously and 44 were obtained from de novo sequencing, validated by synthetic peptides. These microproteins are related to the main bioprocesses of growth and development, such as multicellular organism reproduction, postmating behavior, and oviposition. Over half of the microproteins have predicted functional domains and are conserved across species, suggesting that these microproteins have critical functions in fly development. This work enriches the D. melanogaster proteome and provides a significant data resource for growth and development research.
Assuntos
Drosophila melanogaster , Peptídeos , Aminoácidos , Animais , Drosophila melanogaster/genética , Fases de Leitura Aberta , Peptídeos/genética , Proteoma/genéticaRESUMO
Geometric metasurfaces have shown great potential in holography due to their straightforward geometric nature of phase control. The incident angles, spins, and wavelengths of the light provide various degrees of freedom to multiplex metasurface holographic images, which, however, are usually interrelated and hence challenging to be fully decoupled. Here, we report a synergetic recipe to break such seemingly inevitable interrelation by incorporating an effective point source (a pinhole), with which the spin, wavelength, and coordinate of the point source can be fully decoupled in meta-holograms. We experimentally demonstrate spin-decoupled, full-colored metasurface holography and dynamic holography controlled with the position of the point source. The significance of this work is not merely to offer an alternative approach to break the interrelation limitations of the geometric metasurface, but more importantly, it provides a promising route for point sources in reality to realize advanced functionalities with meta-optics, such as single-photon holography, fluorescence holography, etc.
RESUMO
MoS2 is promising for the next generation of electronic and optoelectronic devices by virtue of its unique optical, electrical and mechanical properties. Bandgap engineering of it is an interesting topic. However, the reported factors including temperature, defect, strain and external electric field are difficult to handle precisely. Here, we demonstrated direct-indirect bandgap transition in monolayer MoS2 induced by an individual Si nanoparticle. We observed photoluminescence (PL) emission with obvious spectral redshift and broadening in the MoS2/Si heterostructures after depositing Si nanoparticles onto the surface of monolayer MoS2. Raman spectra of heterostructures show measurable shifts in contrast with the bare MoS2. Energy transfer between MoS2 and Si nanoparticles did not happen, which is demonstrated by scattering spectra of MoS2/Si heterostructures. In addition, the natural oxide layer presented on the surface of Si nanoparticles can effectively prevent the carrier transferring from Si nanoparticles to MoS2. Thus, we attribute the direct-indirect bandgap transition of monolayer MoS2 to the strain induced by Si nanoparticles controlled by their sizes. The PL intensity of MoS2/Si heterostructure depends on the size of Si nanoparticles, resulting from the enhanced optical absorption of monolayer MoS2 based on Mie resonances of Si nanoparticles. The MoS2/Si heterostructure is promising for photodetector and circuit integration.
RESUMO
Dielectric nanostructures with Mie resonances have shown promising applications for building nanoantennas and metasurfaces. Coupling between Mie resonators and transition metal dichalcogenide (TMDC) monolayers is of great significance, because the existence of Mie resonances can modulate phases and radiation directions effectively. Recently, monolayer binary and ternary TDMCs have drawn more attention owing to the intriguing and tunable excitonic states from visible to near infrared. However, the coupling mechanism between monolayer TMDCs and Mie resonators has not been well studied. Moreover, it is still a great challenge to realize the control of excitonic emission wavelength and intensity simultaneously. Here, for the first time, we demonstrate that germanium nanoparticles (Ge NPs), a typical high refractive index dielectric Mie resonator, are capable of controlling both the intensity and direction of PL emissions in the near-infrared from monolayer WSe2(1-x)Te2x. Through putting Ge NPs below or above monolayers, we observed the obvious emission directivity because of the higher refractive index and higher loss of Ge than silicon. Besides, higher absorption in Ge NPs brings photothermal effects during the interaction with TMDCs. These findings indicate that Ge-based Mie resonators may guide the design of new type nanophotonics devices in the future.
RESUMO
We report the chemical vapor deposition (CVD) growth, characterization, and low-temperature magnetotransport of 1T phase multilayer single-crystalline VTe2 nanoplates. The transport studies reveal that no sign of intrinsic long-range ferromagnetism but localized magnetic moments exist in the individual multilayer metallic VTe2 nanoplates. The localized moments give rise to the Kondo effect, evidenced by logarithmical increment of resistivity with decreasing temperature and negative magnetoresistance (NMR) regardless of the direction of magnetic field at temperatures below the resistivity minimum. The low-temperature resistivity upturn is well described by the Hamann equation, and the NMR at different temperatures, a manifestation of the magnetization of the localized spins, is well fitted to a Brillouin function for S = 1/2. Density functional theory calculations reveal that the localized magnetic moments mainly come from the interstitial vanadium ions in the VTe2 nanoplates. Our results will shed light on the study of magnetic properties, strong correlation, and many-body physics in two-dimensional metallic transition metal dichalcogenides.
RESUMO
Fano resonance has been observed in a wide variety of nanophotonic structures such as photonic crystals, plasmonic structures, and metamaterials. It arises from the interference of discrete resonance states with broadband continuum states. As an emerging nanophotonic material, high-index all-dielectric nanomaterials provide a new platform to achieve Fano resonance by virtue of the simultaneous excited electric and magnetic resonances. However, to date, Fano resonance in the visible region has not been observed in individual high-index all-dielectric nanoparticles. Here, for the first time, the experimental observation of the directional Fano resonance is reported in an individual GaAs nanospheroid. The special geometry enables GaAs nanospheroids to generate spectrally overlapped electric and magnetic dipole resonances, which enhances their spectral coupling, giving rise to asymmetric-shaped backward scattering spectrum. This directional Fano resonance can be tuned by the aspect ratio of nanospheroids as well as excitation polarization. In addition, efficient directional light scattering is realized at the total scattering peak of the GaAs nanospheroid. The forward-to-backward scattering ratio can be largely enhanced due to Fano dip in the backward scattering spectrum. These findings suggest that high-index all-dielectric nanospheroid is a promising candidate for directional sources and optical switches.
RESUMO
All-optical modulation is an entangled part of ultrafast nonlinear optics with promising impacts on tunable optical devices in the future. Current advancements in all-optical control predominantly offer modulation by means of altering light intensity, while the ultrafast manipulation of other attributes of light have yet to be further explored. Here, we demonstrate the active modulation of the phase, polarization, and amplitude of light through the nonlinear modification of the optical response of a plasmonic crystal that supports subradiant, high Q, and polarization-selective resonance modes. The designed mode is exclusively accessible via TM-polarized light, which enables significant phase modulation and polarization conversion within the visible spectrum. To tailor the device performance in the time domain, we exploit the ultrafast transport dynamics of hot electrons at the interface of plasmonic metals and charge acceptor materials to facilitate an ultrafast switching speed. In addition, the operating wavelength of the proposed device can be tuned through the control of the in-plane momentum of light. Our work reveals the viability of dynamic phase and polarization control in plasmonic systems for all-optical switching and data processing.
RESUMO
Electrically tunable devices in nanophotonics offer an exciting opportunity to combine electrical and optical functions, opening up their applications in active photonic devices. Silicon as a kind of high refractive index dielectric material has shown comparable performances with plasmonic nanostructures in tailoring and modulating the electromagnetic waves. However, there are few studies on electrically tunable silicon nanoantennas. Here, for the first time we realize the spectral tailoring of an individual silicon nanoparticle in the visible range through changing the applied voltage. We observe that the plasmon-dielectric hybrid resonant peaks experience blue shift and obvious intensity attenuation with increasing the bias voltages from 0 to 1.5 V. A physical model has been established to explain how the applied voltage influences the carrier concentration and how carrier concentration modifies the permittivity of silicon and then the final scattering spectra. Our findings pave a new approach to build excellent tunable nanoantennas or other nanophotonics devices where the optical responses can be purposely controlled by electrical signals.
RESUMO
Grain boundaries (GBs) in polycrystalline graphene scatter charge carriers, which reduces carrier mobility and limits graphene applications in high-speed electronics. Here we report the extraction of the resistivity of GBs and the effect of GBs on carrier mobility by direct four-probe measurements on millimeter-sized graphene bicrystals grown by chemical vapor deposition (CVD). To extract the GB resistivity and carrier mobility from direct four-probe intragrain and intergrain measurements, an electronically equivalent extended 2D GB region is defined based on Ohm's law. Measurements on seven representative GBs find that the maximum resistivities are in the range of several kΩ·µm to more than 100 kΩ·µm. Furthermore, the mobility in these defective regions is reduced to 0.4-5.9 of the mobility of single-crystal, pristine graphene. Similarly, the effect of wrinkles on carrier transport can also be derived. The present approach provides a reliable way to directly probe charge-carrier scattering at GBs and can be further applied to evaluate the GB effect of other two-dimensional polycrystalline materials, such as transition-metal dichalcogenides (TMDCs).
RESUMO
Due to their optical magnetic and electric resonances associated with the high refractive index, dielectric silicon nanoparticles have been explored as novel nanocavities that are excellent candidates for enhancing various light-matter interactions at the nanoscale. Here, from both of theoretical and experimental aspects, we explored resonance coupling between excitons and magnetic/electric resonances in heterostructures composed of the silicon nanoparticle coated with a molecular J-aggregate shell. The resonance coupling was originated from coherent energy transfer between the exciton and magnetic/electric modes, which was manifested by quenching dips on the scattering spectrum due to formation of hybrid modes. The influences of various parameters, including the molecular oscillation strength, molecular absorption line width, molecular shell thickness, refractive index of the surrounding environment, and separation between the core and shell, on the resonance coupling behaviors were scrutinized. In particular, the resonance coupling can approach the strong coupling regime by choosing appropriate molecular parameters, where an anticrossing behavior with a mode splitting of 100 meV was observed on the energy diagram. Most interestingly, the hybrid modes in such dielectric heterostructure can exhibit unidirectional light scattering behaviors, which cannot be achieved by those in plexcitonic nanoparticle composed of a metal nanoparticle core and a molecular shell.
RESUMO
Four new cyano-bridged bimetallic complexes, [{Mn(III)(salen)}2{Fe(III)(qcq)(CN)3}2]n·3nCH3CN·nH2O (1) [salen = N,N'-ethylenebis(salicylideneiminato) dianion; qcq(-) = 8-(2-quinoline-2-carboxamido)quinoline anion], [{Mn(III)(salpn)}2{Fe(III)(qcq)(CN)3}2]n·4nH2O (2) [salpn = N,N'-1,2-propylenebis(salicylideneiminato)dianion], [{Mn(II)(bipy)(CH3OH)}{Fe(III)(qcq)(CN)3}2]2·2H2O·2CH3OH (3) (bipy = 2,2'-bipyridine), and [{Mn(II)(phen)2}{Fe(III)(qcq)(CN)3}2]·CH3CN·2H2O (4) (phen = 1,10-phenanthroline) have been synthesized and characterized both structurally and magnetically. The structures of 1 and 2 are both unique 1-D linear branch chains with additional structural units of {Mn(III)(salen/salpn)}{Fe(III)(qcq)(CN)3} dangling on the sides. In contrast, 3 and 4 are cyano-bridged bimetallic hexanuclear and trinuclear clusters, respectively. The intermolecular short contacts such as π-π interactions and hydrogen bonds extend 1-4 into high dimensional supermolecular networks. Magnetic investigation reveals the dominant intramolecular antiferromagnetic interactions in 1, 3, and 4, while ferromagnetic and antiferromagnetic interactions coexist in 2. Alternating current measurement at low temperature indicates the existence of slow magnetic relaxation in 1 and 2, which should be due to the single ion anisotropy of Mn(III).
RESUMO
DNAzymes are catalytically active single-stranded DNAs in which DNAzyme 10-23 (Dz 10-23) consists of a catalytic core and a substrate-binding arm that reduces gene expression through sequence-specific mRNA cleavage. However, the in vivo application of Dz 10-23 depends on exogenous delivery, which leads to its inability to be synthesized and stabilized in vivo, thus limiting its application. As a unique reverse transcription system, the bacterial retron system can synthesize single-stranded DNA in vivo using ncRNA msr/msd as a template. The objective of this work is to reduce target gene expression using Dz 10-23 generated in vivo by the retron system. In this regard, we successfully generated Dz 10-23 by cloning the Dz 10-23 coding sequence into the retron msd gene and tested its ability to reduce specific gene expression by examining the mRNA levels of cfp encoding cyan fluorescence protein and other functional genes such as mreB and ftsZ. We found that Dz had different repressive effects when targeting different mRNA regions, and in general, the repressive effect was stronger when targeting downstream of mRNAs. Our results also suggested that the reduction effect was due to cleavage of the substrate mRNA by Dz 10-23 rather than the antisense effect of the substrate-binding arm. Therefore, this study not only provided a retron-based method for the intracellular generation of Dz 10-23 but also demonstrated that Dz 10-23 could reduce gene expression by cleaving target mRNAs in cells. We believe that this new strategy would have great potential in the regulation of gene expression.
Assuntos
DNA Catalítico , DNA Catalítico/genética , DNA Catalítico/metabolismo , DNA Bacteriano/genética , RNA Bacteriano/genética , Sequência de Bases , DNA de Cadeia Simples/genética , RNA Mensageiro/genéticaRESUMO
The neurological effects and underlying pathophysiological mechanisms of sports-related concussion (SRC) in active young boxers remain poorly understood. This study aims to investigate the impairment of white matter microstructure and assess changes in glymphatic function following SRC by utilizing neurite orientation dispersion and density imaging (NODDI) on young boxers who have sustained SRC. A total of 60 young participants were recruited, including 30 boxers diagnosed with SRC and 30 healthy individuals engaging in regular exercise. The assessment of whole-brain white matter damage was conducted using diffusion metrics, while the evaluation of glymphatic function was performed through diffusion tensor imaging (DTI) analysis along the perivascular space (DTI-ALPS) index. A two-sample t-test was utilized to examine group differences in DTI and NODDI metrics. Spearman correlation and generalized linear mixed models were employed to investigate the relationship between clinical assessments of SRC and NODDI measurements. Significant alterations were observed in DTI and NODDI metrics among young boxers with SRC. Additionally, the DTI-ALPS index in the SRC group exhibited a significantly higher value than that of the control group (left side: 1.58 vs. 1.48, PFDR = 0.009; right side: 1.61 vs. 1.51, PFDR = 0.02). Moreover, it was observed that the DTI-ALPS index correlated with poorer cognitive test results among boxers in this study population. Repetitive SRC in active young boxers is associated with diffuse white matter injury and glymphatic dysfunction, highlighting the detrimental impact on brain health. These findings highlight the importance of long-term monitoring of the neurological health of boxers.
Assuntos
Boxe , Concussão Encefálica , Imagem de Tensor de Difusão , Sistema Glinfático , Neuritos , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Sistema Glinfático/diagnóstico por imagem , Masculino , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Adolescente , Neuritos/fisiologia , Boxe/lesões , Boxe/fisiologia , Feminino , Estudos de Casos e Controles , Adulto Jovem , Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/fisiopatologiaRESUMO
This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.
Assuntos
Dieta Hiperlipídica , Mitocôndrias , Resultado da Gravidez , Resveratrol , Útero , Animais , Resveratrol/farmacologia , Feminino , Gravidez , Camundongos , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Útero/metabolismo , Útero/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismoRESUMO
It is usually difficult to realize high mobility together with a low threshold voltage and good stability for amorphous oxide thin-film transistors (TFTs). In addition, a low fabrication temperature is preferred in terms of enhancing compatibility with the back end of line of the device. In this study, α-IGZO TFTs were prepared by high-power impulse magnetron sputtering (HiPIMS) at room temperature. The channel was prepared under a two-step deposition pressure process to modulate its electrical properties. X-ray photoelectron spectra revealed that the front-channel has a lower Ga content and a higher oxygen vacancy concentration than the back-channel. This process has the advantage of balancing high mobility and a low threshold voltage of the TFT when compared with a conventional homogeneous channel. It also has a simpler fabrication process than that of a dual active layer comprising heterogeneous materials. The HiPIMS process has the advantage of being a low temperature process for oxide TFTs.
RESUMO
Silicon nanoparticles (Si NPs) supporting Mie resonances exhibit vivid structural colors on the subwavelength scale. For future wearable devices, next generation Si-based optical units need to be dynamic and stretchable for display, sensing, or signal processing required by human-computer interaction. Here, by utilizing the distance-sensitive electromagnetic coupling of Mie resonances, we maximize the active tuning effect of Si NP-based structures including dimers, oligomers, and NPs on WS2, which we called Si nanopixels. Through the optical tweezers-assisted printing of Si nanopixels, patterns can be formed on arbitrary flexible substrates. The strain-sensitive tuning of scattering spectra indicates their promising application on strain sensing of various stretchable substrates via a simple "spray and test" process. In the case of Si nanopixels on polydimethylsiloxane (PDMS), local strains around 1% can be detected by a scattering measurement. Moreover, we demonstrate that the scattering intensity variation of Si nanopixels printed on wrinkled tungsten disulfide (WS2) is pixel-dependent and wavelength-dependent. This property facilitates the application of information encryption, and we demonstrate that three barcodes can be independently encoded into the R, G, and B scattering channels through ternary logic represented by the strain-tuning effects of scattering.
RESUMO
The effects of attapulgite and montmorillonite calcinated at 750 °C for 2 h as supplementary cementing materials (SCMs) on the working properties, mechanical strength, phase composition, morphology, hydration and heat release of ordinary Portland cement (OPC) were studied. The results show that pozzolanic activity increased with time after calcination, and with the increase in content of calcined attapulgite and calcined montmorillonite, the fluidity of cement paste exhibited a downward trend. Meanwhile, the calcined attapulgite had a greater effect on the decrease in the fluidity of cement paste than calcined montmorillonite, and the maximum reduction was 63.3%. Within 28 days, the compressive strength of cement paste with calcined attapulgite and montmorillonite was higher than that of the blank group in the later stage, and the optimum dosages of calcined attapulgite and montmorillonite were 6% and 8%, respectively. In addition, the compressive strength of these samples reached 85 MPa 28 days later. The introduction of calcined attapulgite and montmorillonite increased the polymerization degree of silico-oxygen tetrahedra in C-S-H gels during cement hydration, thereby contributing to accelerating the early hydration process. In addition, the hydration peak of the samples mixed with calcined attapulgite and montmorillonite was advanced, and the peak value was lower than that of the control group.