RESUMO
Regulating the porosity of metal phosphonate frameworks is still challenging, even though this is not an issue for carboxylate-based metal-organic frameworks (MOFs). Quaternary ammonium cations are common template reagents widely used for structure control. However, it is not successful for uranyl phosphonate frameworks (UPFs) because the large volume sizes of templates make it challenging to enter the channels constructed by phosphonate ligands with small pore sizes and low dimensions. In this work, three new porous three-dimensional UPFs were synthesized using the phosphonate ligand and template reagents with the same geometry, namely, (TEA)2(UO2)3(TppmH4)2·2H2O (UPF-106), (TPA)2(UO2)3(TppmH4)2 (UPF-107), and (TBA)2(UO2)5(TppmH2)2(H2O)2·4H2O (UPF-108). The porosity of the UPFs in this work showed a positive relation with the sizes of the template ammonium cations. Thermogravimetric analysis and infrared and ultraviolet spectroscopy were performed. The variable-temperature fluorescence spectra of the three compounds showed that the fluorescence intensity has an excellent relation to temperature with a potential application as fluorescence temperature sensors.
RESUMO
Aromia bungii (Coleoptera: Cerambycidae) is an economically important wood-boring insect pest of stone fruit trees, particularly Prunus persica, in China. It has entered Japan and several European countries as an invasive species in recent years. It is difficult to control because of the cryptic feeding behaviour of larvae beneath the bark. Identification of repellent constituents from non-host plants has potential for use in management strategies against this beetle. Mentha spicata is cultivated extensively in Hebei Province (China) as a medicinal plant. Firstly, antennal responses of female A. bungii to M. spicata volatiles were evaluated by coupled gas chromatography-electroantennograms (GC-EAD), and then the EAD-active components were tested in semi-field trials. The results showed that A. bungii females were significantly repelled by myrcene, (S)-(+)-carvone, (E)-ß-caryophyllene, and borneol compared with the control. The presence of myrcene (100 µL; 90% purity), (S)-(+)-carvone (200 µL; 96% purity), (E)-ß-caryophyllene (500 µL; 98.5% purity), and borneol (800 µL; 80% purity) significantly reduced the perching rates of A. bungii females on both peach logs and leaves. Considering cost and commercial availability, we suggest that myrcene, (S)-(+)-carvone, and (E)-ß-caryophyllene could be promising repellents against A. bungii females in the field.
RESUMO
The material for managing and monitoring waste made from the waste itself is an excellent example of cyclic utilization, which could reduce issues and be more sustainable. A three-dimensional porous uranyl phosphonate MOF (UPF-105) was synthesized via a hydrothermal method. UPF-105 is stable in aqueous solution with pH in the range of 1-11 and maintains crystallinity below 215 °C. The uncoordinated phosphonate groups in the channels act as functional anchors to selectively capture uranyl ions, with a maximum uranium adsorption capacity of 170.23 mg g-1. The fluorescence of UPF-105 makes it a good candidate for a uranyl ion sensor in uranium-contaminated solutions with concentrations in the range of 5-90 ppm.
RESUMO
Ultralarge-pore FDU-12 (ULP-FDU-12) silicas with face-centered cubic structures (Fm3m symmetry) of spherical mesopores were synthesized at low initial temperature (â¼14 °C) using commercially available PEO-PPO-PEO triblock copolymer Pluronic F127 as a micellar template and xylene as a micelle expander. Xylene was selected on the basis of its predicted higher swelling ability for the Pluronic surfactant micelles in comparison to 1,3,5-trimethylbenzene that was used previously to obtain large-pore FDU-12. The optimization of the synthesis conditions afforded as-synthesized ULP-FDU-12 materials with unit-cell parameters up to 56 nm, which is comparable to the highest reported values for Fm3m structures templated by custom-made surfactants. Calcined silicas were obtained with unit-cell parameters up to 53 nm and pore diameters up to â¼36 nm (for N(2) adsorption at 77 K, the capillary condensation relative pressure was up to 0.938). The preferred silica source was tetraethylorthosilicate, but tetramethylorthosilicate was also found suitable. The pore diameter was dependent on the unit-cell size of the as-synthesized material, but was further tuned by adjusting the time and temperature of the treatment in the HCl solution. If the synthesis was performed at low temperature only, highly ordered closed-pore silicas were obtained at calcination temperatures as low as 450 °C. On the other hand, the hydrothermal treatments, including the acid treatment at 130 °C, afforded silicas with large pore entrance sizes. The present synthesis constitutes a major advancement in the synthesis of ordered silicas with very large open and closed spherical mesopores.
RESUMO
In this work, a new visual colorimetric strip based on cellulose acetate nanofiber mats modified by 2-(5-Bromo-2-pyridylazo)-5-(diethylamino) phenol was successfully prepared via electrospinning technology. The prepared colorimetric strip showed high sensitivity towards UO22+ with the yellow-to-purple color change signal. Upon the optimal conditions of solution pH at 6.0 and response time for 80min, the detection limit for UO22+ can reach 50 ppb. Moreover, the strip also exhibited excellent anti-interference ability in the presence of other metal ions. In order to achieve the quantitative detection for UO22+, a color-differentiation map was established, which was prepared from converted H values. Finally, the strip was also used to detect UO22+ in the seawater and showed high sensitivity.
RESUMO
The pore variations of ordered cage-type mesoporous silica FDU-12s have been analyzed in detail by PXRD, SAXS, nitrogen sorption, and electron crystallography. FDU-12s with a cubic symmetry (space group, Fmm) were templated by amphiphilic triblock copolymer F127 with the addition of 1,3,5-trimethylbenzene and KCl under an acidic condition. Three typical samples with different unit cell sizes, pore cage diameters, and entrance sizes were obtained from different synthesis and hydrothermal treatment temperatures, as indicated by the differences in the PXRD and SAXS patterns. The pore structure changes in the three materials were observed by nitrogen adsorption/desorption and 3-D reconstruction of HRTEM images taken from different crystal orientations. The approximate pore structures of FDU-12s can be regarded as a face-centered cubic (fcc) close-packing of spherical cages, each connected to 12 nearest neighboring cages. However, the ideal spherical model is only valid for the FDU-12s prepared at a low temperature (L-FDU-12-100). The cage shape of the FDU-12s synthesized at a high temperature deviates from perfect spheres and is accompanied by an entrance enlargement. The temperature-dependent behavior of the PEO block is discussed with regard to its influence on the micelles and hence the cage configuration. The better understanding of the formation mechanism via the combined characterization techniques and modeling may lead to a more rational approach for tuning the pore cages and entrances of the mesoporous FDU-12 materials.
RESUMO
A strategy of protein-entrapment in bicontinuous gyroidal mesoporous carbon (BGMC) nanocomposite films is described. Herein, the quasi-reversible electron transfer of redox proteins (such as glucose oxidase and myoglobin) is probed and the associated biocatalytic activity is revealed. The apparent heterogeneous electron transfer rate constant of the immobilized glucose oxidase is up to 9.4 s(-1), much larger than those in carbon nanotubes and some conventional mesoporous carbons. The BGMC based glucose biosensor enables the determination of glucose at a potential of 0.6 V (vs. SCE). Its detection limit is 1.0×10(-5) M (signal-to-noise ratio, S/N=3), the linear response is up to 7.49 mM and the detection sensitivity is 52.5 nA mM(-1) Furthermore, a series of BGMCs with different pore sizes is designed and synthesized using sucrose or phenol formaldehyde resin to study the influences of pore sizes and carbon sources on the immobilization of redox proteins and on the heterogeneous electron transfer.