Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 62(9): 2218-2226, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37132859

RESUMO

We propose a novel bend-resistant stress-type large-mode-area fiber with segmented cladding, to the best of our knowledge, in which a high refractive index stress rod is introduced at the core, to improve the loss ratio between the least high-order mode (HOM) and fundamental mode loss, and to reduce the fundamental mode loss effectively. The mode loss and effective mode field area with or without heat load, and mode field evolution between the straight and bending transition are investigated, by utilizing the finite element method and the coupled-mode theory. The results show that the effective mode field area and the loss of the fundamental mode can reach up to 1050.1 µm2 and 0.0055d B⋅m -1, respectively, and the loss ratio between the least loss HOM and fundamental mode loss is greater than 210. The coupling efficient of the fundamental mode in the straight-bending transition reaches 0.85 at a wavelength of 1.064 µm and a bending radius of 24 cm. In addition, the fiber is insensitive to the bending direction and has excellent single-mode performance in any bending direction; the fiber maintains single-mode operation under heat load from 0 to 8 W/m. This fiber has potential application in compact fiber lasers and amplifiers.

2.
ACS Appl Mater Interfaces ; 13(48): 57619-57628, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806380

RESUMO

Solar blind ultraviolet (SBUV) self-powered photodetectors (PDs) have a great number of applications in civil and military exploration. Ga2O3 is a prospective candidate for SBUV detection owing to its reasonable bandgap corresponding to the SBUV waveband. Nevertheless, the previously reported Ga2O3 photovoltaic devices had low photoresponse performance and were still far from the demands of practical application. Herein, we propose an idea of using spiro-MeOTAD (spiro) as the SBUV transparent conductive layer to construct p-i-n PDs (p-spiro/Ga2O3/n-Si). With the aid of double built-in electric fields, the designed p-i-n PDs could operate without any external power source. Furtherly, the influence of spiro thickness on improving the photoelectric performance of devices is investigated in detail and the optimum device is achieved, translating to a peak responsivity of 192 mA/W upon a weak 254 nm light illumination of 2 µW/cm2 at zero bias. In addition, the I-t curve of our PD shows binary response characteristics and a four-stage current response behavior under a small forward bias, and also, its underlying working mechanism is analyzed. In sum, this newly developed device presents great potential for booming the high energy-efficient optoelectronic devices in the short run.

3.
J Phys Chem Lett ; 12(1): 447-453, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356281

RESUMO

A heterojunction is an essential strategy for multispectral energy-conservation photodetection for its ability to separate photogenerated electron-hole pairs and tune the absorption edge by selecting semiconductors with appropriate bandgaps. A broadband ultraviolet (200-410 nm) self-powered photodetector is constructed on the exfoliated ß-Ga2O3/CuI core-shell microwire heterostructure. Benefiting from the photovoltaic and photoconductive effects, our device performs an excellent ultraviolet (UV) discriminability with a UVC/visible rejection ratio (R225/R600) of 8.8 × 103 and a UVA/visible rejection ratio (R400/R600) of 2.7 × 102, and a self-powered photodetection with a responsivity of 8.46 mA/W, a detectivity of 7.75 × 1011 Jones, an on/off switching ratio of 4.0 × 103, and a raise/decay speed of 97.8/28.9 ms under UVC light. Even without encapsulation, the photodetector keeps a superior stability over ten months. The intrinsically physical insights of the device behaviors are investigated via energy band diagrams, and the charge carrier transfer characteristics of the ß-Ga2O3/CuI interface are predicted by first principle calculation.

4.
ACS Appl Mater Interfaces ; 12(42): 47714-47720, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33045829

RESUMO

Flexible photodetectors (PDs) have become the latest research interest owing to their potential applications in future implantable sensors and foldable/wearable optoelectronics. Ga2O3, an emerging ultrawide band gap semiconductor, is considered as the native photosensitive material for solar-blind PDs. The reported fabrication temperature of Ga2O3 films is usually above 600 °C, which hinders its practical application for flexible devices. In this work, flexible PDs based on graphene/amorphous Ga2O3 van der Waals heterojunctions are fabricated, which demonstrate promising photoresponse to solar-blind ultraviolet light. The device yields a high photo-to-dark current ratio (∼105) and large responsivity (22.75 A/W) under 254 nm light illumination, which could be ascribed to the efficient photogenerated electron-hole pair separation by the strong built-in field. Moreover, flexible PDs also show long-term environmental stability and outstanding mechanical flexibility without any encapsulation. Our work provides a new potential candidate for realizing cost-effective high-performance flexible optoelectronic applications.

5.
ACS Appl Mater Interfaces ; 11(38): 35105-35114, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31474105

RESUMO

Solar-blind photodetectors have captured intense attention due to their high significance in ultraviolet astronomy and biological detection. However, most of the solar-blind photodetectors have not shown extraordinary advantages in weak light signal detection because the forewarning of low-dose deep-ultraviolet radiation is so important for the human immune system. In this study, a high-performance solar-blind photodetector is constructed based on the n-Ga2O3/p-CuSCN core-shell microwire heterojunction by a simple immersion method. In comparison with the single device of the Ga2O3 and CuSCN, the heterojunction photodetector demonstrates an enhanced photoelectric performance with an ultralow dark current of 1.03 pA, high photo-to-dark current ratio of 4.14 × 104, and high rejection ratio (R254/R365) of 1.15 × 104 under a bias of 5 V. Excitingly, the heterostructure photodetector shows high sensitivity to the weak signal (1.5 µW/cm2) of deep ultraviolet and high-resolution detection to the subtle change of signal intensity (1.0 µW/cm2). Under the illumination with 254 nm light at 5 V, the photodetector shows a large responsivity of 13.3 mA/W, superb detectivity of 9.43 × 1011 Jones, and fast response speed with a rise time of 62 ms and decay time of 35 ms. Additionally, the photodetector can work without an external power supply and has specific solar-blind spectrum selectivity as well as excellent stability even through 1 month of storage. Such prominent photodetection, profited by the novel geometric construction and the built-in electric field originating from the p-n heterojunction, meets greatly well the "5S" requirements of the photodetector for practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA